ARM/TDMI

(Rev 4)

Technical Reference Manual

ARM

Copyright © 2001 ARM Limited. All rights reserved.
ARM DDI 0210B

ARM7TDMI
Technical Reference Manual

Copyright © 2001 ARM Limited. All rights reserved.
Release Information

Change history

Date Issue Change
17 April 2001 A First release for ARM7TDMI Rev 4.
19 September 2001 B Maintenance update to correct minor documentation errors.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any materia form except with the prior written permission of the copyright
hol der.

The product described in this document is subject to continuous devel opments and i mprovements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warrantiesimplied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Thisdocument isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Figure B-2 on page B-6 reprinted with permission |EEE Std 1149.1-1990. | EEE Standard Test Access Port
and Boundary-Scan Architecture Copyright 2001, by | EEE. The | EEE disclaimsany responsibility or ligbility
resulting from the placement and use in the described manner.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.
Product Status

The information in this document is final (information on a developed product).
Web Address

http://www.arm. com

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Contents
ARM7TDMI Technical Reference Manual

Preface
About this document
FEEADACK ..ot
Chapter 1 Introduction
11 About the ARMT7TDMI COTEooeiiiiiiiiie ittt 1-2
1.2 ATCRITECIUIE .ot 1-5
1.3 Block, core, and functional diagramsccccceiiiiiiiiien i 1-7
14 INSLIUCION ST SUMIMAIYvvieiiiiiiiiiie ettt ettt ettt e stae e 1-11
Chapter 2 Programmer’s Model
21 About the programmer’'s MOdelcoiuiiiiiii e 2-2
2.2 Processor operating states
23 Memory formatsccccceveeiiieiiinnn.
2.4 Data tyPES ...t
25 OPEratiNng MOUEScoiuieieitie ettt et s
2.6 REQISIErS ..oooiiiieiiii e
2.7 The program status registers
2.8 EXCEPLONS ..oovvvvieciiiiiiee e
2.9 INEITUPL TALENCIES ..ottt
2.10 RESEL ..

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. iii

Contents

Chapter 3 Memory Interface
3.1 About the memory INtErface ... 3-2
3.2 Bus interface signals
3.3 Bus cycle types
3.4 Addressing signals ..
3.5 AAreSS tIMING .eeeiiieie et e nree e
3.6 Data timed SIGNAIScocveiiieiiieieiee ettt
3.7 Stretching access times
3.8 Privileged mode access
3.9 Reset sequence after power up
Chapter 4 Coprocessor Interface
4.1 ADOUL COPFOCESSOIS .uvuieitiietie ettt stte et stee et sttt ees e sbae e e st beenneennea s 4-2
4.2 Coprocessor interface SIgNAISoeooiiiiiiieiieee e 4-4
4.3 Pipeline following SIgNalSc.ooiiiiiiiiie e 4-5
4.4 Coprocessor interface handshakingcccceeiiiiieii e 4-6
4.5 Connecting coprocessors
4.6 If you are not using an external COProCESSONccuuierieiiiieerieeaiiieeeeaene 4-15
4.7 Undefined INSIUCLIONScocueiiiiiie e 4-16
4.8 Privileged INSIIUCHIONSocueiiiiiie e 4-17
Chapter 5 Debug Interface
51 About the debug INtErfacecoeeeiiiiiii e
5.2 Debug Systemscccceeeenniennnen
5.3 Debug interface signals
54 ARM7TDMI core clock domains
55 Determining the core and system state
5.6 About EmbeddedICE-RT logic
5.7 Disabling EmbeddedICE-RT
5.8 Debug Communications Channelc.ccouvieiiiiiiien e 5-17
5.9 MONITOT MOAE ...ttt ar e e 5-21
Chapter 6 Instruction Cycle Timings
6.1 About the instruction cycle timing tablescccoviiiiic e 6-3
6.2 Branch and branch with link
6.3 Thumb branch with link
6.4 Branch and Exchange
6.5 Data operationscccocveevieennnn .
6.6 Multiply and multiply aCCUMUIALEceeeiiiiiiiei e
6.7 (oo To I (= To 151 (= S TP PP PP PRSP URPTPPPRPP
6.8 Store registercccvvvveeeiieiiiieens
6.9 Load multiple registers
6.10 Store multiple registers
6.11 Data SWaP ..ccoviiiiiiieiiicc s
6.12 Software interrupt and exception Ntryccccecvvireeeriiee e
6.13 Coprocessor data OPEratiONcoccviiieieerieee e

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Chapter 7

Appendix A

Appendix B

Appendix C

Contents

6.14 Coprocessor data transfer from memory to COProcessorcccuvveenne. 6-21
6.15 Coprocessor data transfer from coprocessor to memoryccccceeveeee 6-23
6.16 Coprocessor register transfer, load from cOprocessorc.ccccceveeieeennn. 6-25
6.17 Coprocessor register transfer, store to coprocessor

6.18 Undefined instructions and coprocessor absentc.........

6.19 Unexecuted iINSTUCTIONScceeveiiieeriiieieeees st

6.20 INStruction SpPeed SUMMANYccouiiiiiiiiiiiies et

AC and DC Parameters

7.1 TIMING IAGTAMS ittt e e e e re e
7.2 Notes on AC Parameters
7.3 DC PArAMELEISoieiiiiiieie ettt e e e s e s e e e e e e

Signal and Transistor Descriptions

Al TransiStor diMENSIONSoiiiiie i A-2
A2 Signal typesvveveevveiiiieee e

A3 Signal descriptions

Debug in Depth

B.1 Scan chains and the JTAG interfacecccvvvveiiie i B-3
B.2 Resetting the TAP CONIOIIErcooiiiiiiiiii e B-7
B.3 Pullup resistorscccccevviveniiieninennn

B.4 Instruction register

B.5 Public instructions

B.6 Test data registers

B.7 The ARM7TDMI COre ClOCKS ...ccviiiiiieiiiieie et B-23
B.8 Determining the core and system state in debug stateccccoeceeeennneen. B-25
B.9 Behavior of the program counter in debug stateccocooieiiiiiiinnine B-31
B.10 Priorities and exceptions

B.11 Scan chain cell dataccccccuvee.

B.12 The watchpoint registers

B.13 Programming breakpointsceeeiiiiieiiiniee e

B.14 Programming WatChpPOINTSouviiiiiiiiie e

B.15 The debug CoNtrol rEGISIErccciiiieie e e

B.16 The debug Status regiStErcociiiiieieei e e

B.17 The abort status registerccccovveeene

B.18 Coupling breakpoints and watchpoints ...

B.19 EmbeddedICE-RT timingccccoecvveenne

B.20 Programming RESEICHONcc.uiiiiiieiiiiieee e

Differences Between Rev 3a and Rev 4

Ci Summary of differences between Rev3aand Rev4ccooveeviiinnnnn.
Cc.2 Detailed descriptions of differences between Rev 3a and Rev 4
Glossary

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. \Y

Contents

Vi

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

List of Tables
ARM7TDMI Technical Reference Manual

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 4-1
Table 4-2

ChANGE NISTOTY ..ttt et n bt sn e nn s ii
KEY 10 tADIES ... e e e 1-11
ARM INSLIUCHION SUMMEAIYeiiitiiieitie ettt ettt et ee s an e n e 1-13
Addressing modes
(0] 01T = 1 [0 12 PO PSSP O PP PRU T PPPPRPPPPPPRRN
1= Lo £SO UUR PP
Condition fieldsccccoovveriieenne
Thumb instruction set summary ...
Register mode identifiers
PSR MOAE DIt VAIUES ...t
Exception entry and exit
Exception Vectorsccccceevvrennen.

Exception priority order

Bus cycle typesccccveveniiinnnn

BUISE LYPES - tttitie ittt etttk et ettt ekttt h ekt et bbb e st ekt e e ek ee e et sbe e neenbe e
Significant addreSS DItSooiiiii i
NOPC .o

NnTRANS encoding
Tristate control of processor outputs
REAMA BCCESSES ...ttt ettt ettt e et n e r e s

Use of nM[4:0] to indicate current processor MOc.ceeeeviiiieiieriinienieeeeiseeeeens 3-31
Coprocessor availability
Handshaking SIGNaISooiiiiiiii e s

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. vii

List of Tables

Table 4-3
Table 4-4
Table 5-1
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 6-11
Table 6-12
Table 6-13
Table 6-14
Table 6-15
Table 6-16
Table 6-17
Table 6-18
Table 6-19
Table 6-20
Table 6-21
Table 6-22
Table 6-23
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 7-8
Table 7-9
Table 7-10
Table 7-11
Table 7-12
Table 7-13
Table 7-14
Table 7-15
Table 7-16
Table 7-17
Table 7-18
Table 7-19
Table 7-20
Table 7-21

Summary of COProCesSOr SIGNAINGcccvvviiirieiiiiieie e
Mode identifier signal meanings (NTRANS)oiiiiiiiiie e
DCC register aCCeSS iNSIIUCHIONScieiiiiieieeiiiet et ee e et ee e e et e e e esneaea e s
Branch instruction cycle operationscccccoceveenieennne

Thumb long branch with linkccccooiiiiie

Branch and exchange instruction cycle operations
Data operation iNStrUCLION CYCIEScccuiiiiiiie et
Multiply instruction Cycle OPerationsccceveiiiiiiiiir i
Multiply accumulate instruction cycle Operationsccccccvereeerniie e
Multiply long instruction cycle OPerationscccccveiivieeriiieiiies e
Multiply accumulate long instruction cycle operationscccccceevcieeeeeneiieneenn. 6-10
Load register instruction Cycle OPerationscceviiieieenieieiiies et
MAS[1:0] signal encodingcccoecveeernverieeeeniieeenes
Store register instruction cycle operations
Load multiple registers instruction cycle operations ...
Store multiple registers instruction cycle operations
Data swap instruction CYCle OPErationsScceeiiiiriieeeniiie e
Software Interrupt instruction cycle Operationsc.ccccevveeeiiiin e
Coprocessor data operation instruction cycle operationscccoecveeriieeeenneennnn 6-20
Coprocessor data transfer instruction cycle operations

coprocessor data transfer instruction cycle operations
Coprocessor register transfer, load from coprocessor ...
Coprocessor register transfer, store t0 COProCESSONuuiiieiuiiireeaiiiiiieaeeiieeeaenns
Undefined instruction cycle Operationscccccvveoiviiieieenii e
Unexecuted instruction Cycle OPerationsccccevviieieeniiinieies e
ARM iNStruction SPEEA SUMIMANYccciiuiiiieeeeriieee et eeir et e essr e sne e sreee s
General timing parametersccccccvvveveeneee e

ABE address control timing parameters

Bidirectional data write cycle timing parameters
Bidirectional data read cycle timing parameters
Data bus control timing PAramMeterscccoeiriiiiiirieeiiree e e e
Output 3-state time timiNg PAramMEtErScooiiiiiieriieeersee e
Unidirectional data write cycle timing parametersccccveveeriieeennee e seeeens
Unidirectional data read cycle timing parameters
Configuration pin timing parametersc.cccceevveriinennn

Coprocessor timing parametersccoccveevvieeerineninenn

EXception timing PArameEterScoocoiieiieie et n
Synchronous interrupt timing PAramMetersccceovvriereriee e
Debug timiNg PAramMELEIScoiiiiii et
DCC output timiNG PAramMELEISecieiiiiiiiie et et ee e s ee e s see e e e e seneeaeaenaens
Breakpoint timing parameterscccceevveniieneenieenns

TCK and ECLK timing parameters
MCLK timing parameterscccccvvvmeeniveennieceenes e

Scan general timing PAraMELErSooviiiiirieei e e nr e
Reset period timing PArameEterscocvviiireeerieieiiee et
Output enable and disable timing parameterscccooccerieeenniiee e
ALE address control timing Parametersccceeeruriiiemeenieeenees e s

viii

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Table 7-22
Table 7-23
Table A-1
Table A-2
Table A-3
Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table B-8
Table B-9

List of Tables

APE address control timing Parameterscceeeieiiieieeniiie e
AC timing parameters used in this chaptercccooiii e
Transistor gate dimensions of the output driver for a 0.18 um process
SIGNAILYPES ettt e
Signal descriptions
Public instructions
Scan chain number allocation
Scan Chain 0 CeIIS ... e
SCaAN ChAIN L CEIIS ...ttt
Function and mapping of EmbeddedICE-RT registersccccccovirieveriieeennnnn e
MAS[1:0] Signal @NCOUINGoiiiuiiierieieeeis e
Debug control register bit aSSIGNMENTSccuviiiiiiiiiiie e
Interrupt signal controlcccocvviveeriineenns

Debug status register bit assignments

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. ix

List of Tables

X Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

List of Figures
ARM7TDMI Technical Reference Manual

Figure Pre-1
Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10

Key to timing diagram CONVENLIONSc.oooiiviiiiiie ettt Xviii
INSrUCLION PIPEIINE ...oiiiiiie e s 1-3
ARMT7TDMI processor bIOCK diagramcooiriiiiieiiiiie et 1-8
ARM7TDMI main processor logic

ARMT7TDMI processor functional diagramcccovvieeriiiiiiecn e
ARM INSLrUCtioN St FOIMALScovviiiiiiieiiiee et e e
Thumb inStruction Set fOrMALScovveeeiiiiiee e
Little-endian addresses of bytes and halfwords within words
Big-endian addresses of bytes and halfwords within words

Register organization in ARM SEAtecocuuiiiiiiiiiiiee et
Register organization in TAUMD Stateccccooiiiiiiiiir e
Mapping of Thumb-state registers onto ARM-state registers
Program status register format
Simple memory cycle ...

Nonsequential MEMOTY CYCIEoiiiiiiiiiie et
Sequential ACCESS CYCIES ...coviiiiiiii e
Internal cyclescocevveeeniiinnnen

Merged IS cycle
Coprocessor register transfer cycles
MEMOTY CYCIE tIMING .oiviiieiitii et nr e e
PiIpelined @0UrESSEScicveeeeiiiie ettt
Depipelined addresses
SRAM compatible address tiMiNgcccoovvieiiieirieee e

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. Xi

List of Figures

Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 7-16
Figure 7-17
Figure 7-18
Figure 7-19
Figure 7-20
Figure 7-21
Figure 7-22

External bus arrangementcooiiii it
Bidirectional bus tiMINGoooueeiiii e e
Unidirectional BUS tIMINGoooiee ot et
External connection of unidirectional buses
Data write bus cycle
Data bus control circuit
Test chip data DUS CIFCUILcovuiiieiis e e
IMEIMIOTY BCCESS .euuviuttti it eniee ettt ateeeae e abe e e ateenbe ekt e aseeeae e ek be e s e en bt e et e ennee et e e sbbe e eente s
TWO-CYCIE MEMOIY GCCESS .eeieueiiiiiitieuieiatieeieeatbeestee e e bt e s see s e sbbe s e sbe e e aeeenee st
Data rePICALIONeeiiiiiiie ettt e n
Typical SYSTEM HIMING ..oiiiieiiiitiie et st s
RESEE SEOUEBNCE ...ttt ettt ettt ettt ettt et eb et e es e ettt e s e b e sbae e e enee s
Coprocessor busy-wait SeqUENCecccceeeereenene..

Coprocessor register transfer sequence
Coprocessor data operation sequence

COoprocessor [0Ad SEQUENCEcuviiiiieitiie et siieeee st e ee st e n e snn e s anree e
Coprocessor connections with bidirectional busccccciieiiiii e 4-12
Coprocessor connections with unidirectional busccccoooiiiiiii e, 4-13
Connecting MUItiPIE COPIrOCESSONSocicvriiiiieie ettt et 4-14
Typical debug systemc.cc....... 5-4
ARM7TDMI block diagram ..
Debug state entryccocceiiieennie e 5-8
Clock switching on entry to debug state 5-11
ARM7 CPU main processor logic, TAP controller, and EmbeddedICE-RT logic 5-14
DCC control register fOrMALeeii et e e ee e 5-18
GENETAI LIMINGS ..ttt e e e s are e e en e e s e e s
ABE address control
Bidirectional data write cycle
Bidirectional data read cycle ..
Data DUS CONTIOLeiiiie ettt ettt e e ettt e e e e e et e e e eeeeee s
OULPUL 3-STALE TIME ..ottt et ee e s sre e en e e nn s
Unidirectional data write cycle
Unidirectional data read cycle
Configuration pin timing
Coprocessor timing
Exception timingccc.ceee..

Synchronous iNterruPt tIMINGcecooieer e
DEDUG LIMING .ttt n
DCC OULPUL TIMING +eetieeetees ettt e se e et e e as e e s anbe e ene e snn e s
Breakpoint tIMINGooiiee et
TCK and ECLK relationship ...
MCLK timingccceevvvveen.
Scan general timing
ReSet PEriOd tIMING ...vveiiiii et n
Output enable and disable times due to HIGHZ TAP instructioncc.ccceuee... 7-19
Output enable and disable times due to data SCanNINgGccccceevverieveerieee e 7-19
ALE address CONLIOLcuieiiiieeiiiiie ettt ettt ee e et ee e e s e e e eeeena 7-20

Xii

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Figure 7-23
Figure B-1
Figure B-2
Figure B-3
Figure B-4
Figure B-5
Figure B-6
Figure B-7
Figure B-8
Figure B-9
Figure B-10
Figure B-11
Figure B-12

List of Figures

APE QddreSS CONTIOLviiiiiiiiitie ettt ettt e e 7-21
ARMT7TDMI core scan chain arrangementscccveiiveeeriiie e B-4
Test access port controller state tranSitioNSc.eeeiiiieiiieer e B-6
ID COdE regiSter FOrMALcc.uiiiiii et B-15
OULPUL SCAN CEII .ottt B-19
Clock switching on entry to debug Statecccoveeeeiiiiniiie e B-23
DebUQg EXIt SEQUENCEoeiiiiiiiiieiei ettt et e B-29
EmbeddedICE-RT bIock diagramccccoeiiiiiie e B-44
Watchpoint control value and mask formatccccccovieieeniiin i B-46
Debug control register fOrMatoeoiiiii i e B-52
Debug status register FOrmMaLteeiiiiii i e e B-55
Debug control and status register StrUCUrecoocvviieveeiieee e e B-56
Debug abort StAtUS FEGISTETccveiiieiiieiitiie et B-57

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. Xiii

List of Figures

Xiv Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Preface

This preface introduces the ARM7TDMI core and its reference documentation. It
contains the following sections:

. About this document on page xvi
. Further reading on page xviii
. Feedback on page xix.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

XV

Preface

About this document

Intended audience

Using this manual

Thisdocument is areference manual for the ARM7TDMI (Rev 4) processor.

This document has been written for experienced hardware and software engineers who
are working with the ARM7TDMI processor.

This document is organized into the following chapters:

Chapter 1 Introduction
Introduction to the architecture.

Chapter 2 Programmer’s Model
32-bit ARM and 16-bit Thumb instruction sets.

Chapter 3 Memory Interface
Nonsequential, sequential, internal, and coprocessor register transfer
memory cycles.

Chapter 4 Coprocessor Interface
Implementation of the specialized additional instructions for use with
coprocessors and a description of the interface.

Chapter 5 Debug I nterface

ARM7TDMI core hardware extensions for advanced debugging to make
it simpler to develop application software, operating systems, and
hardware.

Chapter 6 Instruction Cycle Timings
Instruction cycle timings.

Chapter 7 AC and DC Parameters
AC and DC parameters, timing diagrams, definitions, and operating data.

Appendix A Signal and Transistor Descriptions
ARM7TDMI core signals.

XVi

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Preface

Appendix B Debug in Depth
Further information on the debug interface and Embedded! CE-RT
macrocell.

Appendix C Differences Between Rev 3a and Rev 4

Description of the differences and enhancements between Rev 3aand
Rev 4 of the processor.

Typographical conventions
The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names and buttons. Also
used for terms in descriptive lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for acommand or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic
Denotes arguments to commands and functions where the argument isto
be replaced by a specific value.

monospace bold

Denotes language keywords when used outside example code and ARM
processor signal names.

Timing diagram conventions

Thekey provided in Figure Pre-1 on page xviii explainsthe components used in timing
diagrams. Any variations are labeled when they occur. Therefore, no additional
meaning must be attached unless specifically stated.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. Xvii

Preface

Further reading

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

MR

Heavy line indicates region of interest

Figure Pre-1 Key to timing diagram conventions

This section lists publications by ARM Limited and third parties.

ARM periodically provides updates and corrections to its documentation. For current
errata sheets, addenda, and list of Frequently Asked Questions go to the ARM website:

www.arm.com

ARM publications

This document contains information that is specific to the ARM7TDMI core. Refer to
the following documents for other relevant information:

. ARM Architecture Reference Manual (ARM DDI 0100).

Other publications
This section lists relevant documents published by third parties:

. IEEE Sd. 1149.1-1990 Standard Test Access Port and Boundary-Scan
Architecture.

XViii

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Preface

Feedback

ARM Limited welcomes feedback both on the ARM7TDMI (Rev 4) processor, and on
the documentation.

Feedback on the ARM7TDMI core

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments.

Feedback on this document

If you have any comments about this document, please send email to errata@arm. com
giving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. Xix

Preface

XX

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Chapter 1
Introduction

This chapter introduces the ARM7TDMI (Rev 4) processor. It contains the following
sections:

About the ARM7TDMI core on page 1-2
Architecture on page 1-5

Block, core, and functional diagrams on page 1-7
Instruction set summary on page 1-11.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

1-1

Introduction

1.1 About the ARM7TDMI core

The ARM7TDMI coreisamember of the ARM family of general-purpose 32-bit
microprocessors. The ARM family offers high performance for very low power
consumption, and small size.

The ARM architecture is based on Reduced Instruction Set Computer (RISC)
principles. The RISC instruction set, and related decode mechanism are much simpler
than those of Complex Instruction Set Computer (CISC) designs. This simplicity gives:

. a high instruction throughput
. an excellent real-time interrupt response
. asmall, cost-effective, processor macrocell.

This section describes:

. The instruction pipeline

. Memory access on page 1-3

. Memory interface on page 1-3.

. Embedded| CE-RT logic on page 1-4.

1.1.1 Theinstruction pipeline

The ARM7TDMI core uses a pipeline to increase the speed of the flow of instructions
to the processor. This allows several operations to take place simultaneously, and the
processing and memory systems to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages:

. Fetch
. Decode
. Execute.

The instruction pipeline is shown in Figure 1-1 on page 1-3.

1-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Introduction

Fetch Instruction fetched from memory

v

Decode

¢ Register(s) read from register bank
Execute Shift and ALU operation
Write register(s) back to register bank

Decoding of registers used in
instruction

Figure 1-1 Instruction pipeline

During normal operation, while oneinstruction isbeing executed, its successor isbeing
decoded, and athird instruction is being fetched from memory.

The program counter pointsto theinstruction being fetched rather than to theinstruction
being executed. Thisisimportant because it means that the Program Counter (PC)
value used in an executing instruction is aways two instructions ahead of the address.

1.1.2 Memory access

The ARM7TDMI core has aVon Neumann architecture, with a single 32-bit data bus
carrying both instructions and data. Only load, store, and swap instructions can access
data from memory.

Data can be:

. 8-hit (bytes)

. 16-bit (halfwords)
. 32-bit (words).

Words must be aligned to 4-byte boundaries. Halfwords must be aligned to 2-byte
boundaries.

1.1.3 Memory interface

The ARM7TDMI processor memory interface has been designed to alow performance
potentia to be realized, while minimizing the use of memory. Speed-critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic. These control signal sfacilitate the expl oitation of the fast-burst access
modes supported by many on-chip and off-chip memory technologies.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 1-3

Introduction

The ARM7TDMI core has four basic types of memory cycle:
. idecycle

. nonsequential cycle

. sequentia cycle

. coprocessor register transfer cycle.

1.1.4 EmbeddedICE-RT logic

The EmbeddedI CE-RT logic provides integrated on-chip debug support for the
ARM7TDMI core. You use the Embeddedl CE-RT logic to program the conditions
under which a breakpoint or watchpoint can occur.

The Embeddedl CE-RT logic contains a Debug Communications Channel (DCC), used
to pass information between the target and the host debugger. The EmbeddedI CE-RT
logic is controlled through the Joint Test Action Group (JTAG) test access port.

For more information about the EmbeddedI CE-RT logic, see Chapter 5 Debug
Interface and Appendix B Debug in Depth).

1-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Introduction

1.2 Architecture

The ARM7TDMI processor has two instruction sets:
. the 32-bit ARM instruction set
. the 16-bit Thumb instruction set.

The ARM7TDMI processor isan implementation of the ARMvAT architecture. For full
details of both the ARM and Thumb instruction sets refer to the ARM Architecture
Reference Manual.

This section describes:
. Instruction compression
. The Thumb instruction set.

121 Instruction compression

Microprocessor architectures traditionally have the same width for instructions and
data. In comparison with 16-bit architectures, 32-bit architectures exhibit higher
performance when manipulating 32-bit data, and can address a large address space
much more efficiently.

16-bit architectures typically have higher code density than 32-bit architectures, but
approximately half the performance.

Thumb implements a 16-bit instruction set on a 32-bit architecture to provide:
. higher performance than a 16-bit architecture
. higher code density than a 32-bit architecture.

1.2.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM
instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-bit
ARM instruction that has the same effect on the processor model. Thumb instructions
operate with the standard ARM register configuration, allowing excellent
interoperability between ARM and Thumb states.

On execution, 16-bit Thumb instructions are transparently decompressed to full 32-bit
ARM instructions in real time, without performance loss.

Thumb has al the advantages of a 32-bit core:

. 32-bit address space

. 32-bit registers

. 32-bit shifter, and Arithmetic Logic Unit (ALU)
. 32-bit memory transfer.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 1-5

Introduction

Thumb therefore offersalong branch range, powerful arithmetic operations, and alarge
address space.

Thumb code s typically 65% of the size of ARM code, and provides 160% of the
performance of ARM code when running from a 16-bit memory system. Thumb,
therefore, makes the ARM7TDMI core ideally suited to embedded applications with
restricted memory bandwidth, where code density and footprint is important.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets gives designers
the flexibility to emphasize performance or code size on a subroutine level, according
to the requirements of their applications. For example, critical loops for applications
such asfast interrupts and DSP a gorithms can be coded using the full ARM instruction
set then linked with Thumb code.

1-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Introduction

1.3 Block, core, and functional diagrams

The ARM7TDMI processor architecture, core, and functional diagrams areillustrated
in the following figures:

Figure 1-2 on page 1-8 shows a block diagram of the ARM7TDMI processor
components and major signal paths

Figure 1-3 on page 1-9 shows the main processor logic at the core of the
ARM7TDMI

Figure 1-4 on page 1-10 shows the major signal paths for the ARM7TDMI
rocessor.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 1-7

Introduction

—

Scan chain 0

A

RANGEOUTO0
RANGEOUT1

EXTERNO
EXTERN1

A

vy

EmbeddedICE-RT
Logic

nOPC
nRW
MASI[1:0]

L

— Scan chain 2 T

nTRANS

nMREQ
A[31:0] ‘

D[31:0] <

DIN[31:0]

DOUT[31:0] <

Bus splitter

>

ARM7TDM
(CPU core)

Scan chain 1

TAP controller

All other
signals

—

—» SCREG[3:0]

—>

IR[3:0]

TCK T™MS

nTRST

TDI

TDO

—» TAPSM[3:0]

Figure 1-2 ARM7TDMI processor block diagram

1-8

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

A[31:0]

Address register

=

PC bus

<~

Address

incrementer

Register bank
(31 x 32-bit registers)
(6 status registers)

Incrementer bus

ALU bus

()

32x8
Multiplier

A bus

)

—

Barrel shifter

B bus

32-bit ALU

i

Scan control

Instruction
decoder and
logic control

Write data register

nENOUT

DBE

nENIN

Instruction pipeline
Read data register
Thumb instruction controller

5

<

D[31:0]

Introduction

——>» INSTRVALID

DBGRQI
BREAKPTI
DBGACK
ECLK
nEXEC
ISYNC
BL[3:0]
APE
MCLK
nWAIT
nRW
MAS[1:0]
nIRQ
nFIQ
nRESET
ABORT
nTRANS
nMREQ
nOPC
SEQ
LOCK
nCPI
CPA
CPB
nM[4:0]
TBE
TBIT
HIGHZ

Figure 1-3 ARM7TDMI main processor logic

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

Introduction

MCLK ———p «———— TCK)
Clocks and
timing nWAIT ——p «— TMS
ECLK ¢— —— TDI
—>
niRQ «——— nTRST
Interrupts nFIQ ———p| 100
ISYNC ——p TAPSM[3:0] >Boundary
— NnRESET —— | ’ : scan
% IR[3:0]
BUSEN —p
——» nTDOEN
HIGHZ ¢——
——» TCK1
nHIGHZ ——
——» TCK2
BIGEND f—————p SCREG[3:0
nENIN ———p| S
11 Boundary scan
nENOUT 4—— / I control signals
cont?oulz< NENOUTI < ——» nM[4:0] Processor mode
ABE > » TBIT Processor state
ALE ———p > A[31:0])
APE ————p 3 DOUT[31:0]
DBE > ARM7TDMI > D[31:0]
TBE —————p| —————— DIN[31:0]
BUSDIS ¢——— ——» nMREQ Memory
NG ECAPCLK €4——— - » SEQ >interface
- DBGRQ ———— P ———» nRW
BREAKPT ———p» > MAS[1:0]
DBGACK €¢——— = BL[3:0]
nEXEC €4—— —————p LOCK),
EEE—
EXTERN1 » nTRANS Memory t
Y managemen
EXTERNO | ABORT interfagce
Debug< DBGEN ————p
RANGEOUT0 €4¢—— VDb }Power
RANGEOUT1 <—— < vss
DBGRQl €¢—— —» nOPC
— — nCPI Coprocessor
COMMRX interface
COMMTX €¢—— —CPA
__ INSTRVALID ¢—— ——CPB
Figure 1-4 ARM7TDMI processor functional diagram
1-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Introduction

14 Instruction set summary

This section provides a description of the instruction sets used on the ARM7TDMI
processor.

This section describes:

. Format summary

. ARM instruction summary on page 1-13

. Thumb instruction summary on page 1-20.

141 Format summary

This section provides a summary of the ARM, and Thumb instruction sets:
. ARM instruction summary on page 1-13
. Thumb instruction summary on page 1-20.

A key to the instruction set tables is provided in Table 1-1.

The ARM7TDMI processor uses an implementation of the ARMvAT architecture. For
acompl ete description of both instruction sets, refer to the ARM Architecture Reference
Manual.

Table 1-1 Key to tables

Type

Description

{cond}

Condition field, see Table 1-6 on page 1-20.

<Oprnd2>

Operand2, see Table 1-4 on page 1-19.

{field}

Control field, see Table 1-5 on page 1-19.

S

Sets condition codes, optional.

B

Byte operation, optional.

H

Halfword operation, optional.

T

Forces address trand ation. Cannot be used with pre-indexed addresses.

Addressing modes See Addressing modes on page 1-16.

#32bit_Imm

A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.

<reglist>

A comma-separated list of registers, enclosed in braces ({ and}).

The ARM instruction set formats are shown in Figure 1-5 on page 1-12.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 1-11

Introduction

Refer to the ARM Architectural Reference Manual for moreinformation about the ARM
instruction set formats.

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

Data pro,fse;sti:fnzpe‘: Cond |0|0|1| Opcode |S Rn Rd Operand 2
Mutily] Cond | 0|0[0|0|0|0|A|S Rd Rn Rs 1/0/0/1 Rm
Multiply long Cond 0/|0|0|O0|1T|U|A|S RdHi RdLo Rn 1/0]/0(1 Rm
Single data swap Cond o|jojo|1{0/B|0|O Rn Rd 0|0j0|0O[1|0|0]|1 Rm
Branch and exchange| Cond |0 [0[0[1[0|0|1/0|1[1[1[1][1]|1]|1]|1/1[1[1]1]0]|0]|0]1 Rn
”a”w°“’gag‘§t‘;f2§f§; Cond |0|0|0|P|U|O|W|L Rn Rd 0/0[0[0[1|S|H|1 Rm
o oo Cond 10| 0[0|P|U/1|W|L| Rn Rd Offset |1 |S|H|1| Offset
Single data transfer Cond 0|1/1|P|UIB|/W|L Rn Rd Offset
Undefired| Cond 0|11 1
Block data transfer Cond 1/0|0|P|U|S|W|L Rn Register list
Branch Cond 1/0(1|L Offset
Coprocessordatal Cond | 1|1|0|P|U/N|W|L| Rn CRd CP# Offset
Coprocese s Cond | 1/1]1/0| CPOpc CRn CRd CP# CP |0| CRm
Coprocessorreger Cond |1 [1|1|0|CPOpc|L| CRn Rd CP# CP |1| CRm
Software interrupt Cond 101111 Ignored by processor

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

Figure 1-5 ARM instruction set formats

1-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Introduction

Note

Some instruction codes are not defined but do not cause the Undefined instruction trap
to betaken, for instance a multiply instruction with bit 6 changed to a 1. These
instructions must not be used because their action might change in future ARM
implementations. The behavior of these instruction codes on the ARM7TDMI
processor is unpredictable.

1.4.2 ARM instruction summary
The ARM instruction set summary islisted in Table 1-2.

Table 1-2 ARM instruction summary

Operation Assembly syntax

Move Move MOV{cond}{S} Rd, <Oprnd2>
Move NOT MVN{cond}{S} Rd, <Oprnd2>
Move SPSR to register MRS{cond} Rd, SPSR
Move CPSR to register MRS{cond} Rd, CPSR
Move register to SPSR MSR{cond} SPSR{field}, Rm
Move register to CPSR MSR{cond} CPSR{field}, Rm
Move immediate to SPSR flags MSR{cond} SPSR_f, #32bit_Imm
Move immediate to CPSR flags MSR{cond} CPSR_f, #32bit_Imm

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>
Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>
Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>
Subtract with carry SBC{cond}{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract with carry RSC{cond}{S} Rd, Rn, <Oprnd2>
Multiply MUL{cond}{S} Rd, Rm, Rs
Multiply accumulate MLA{cond}{S} Rd, Rm, Rs, Rn
Multiply unsigned long UMULL{cond}{S} RdLo, RdHi, Rm, Rs

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 1-13

Introduction

Table 1-2 ARM instruction summary (continued)

Operation Assembly syntax
Multiply unsigned accumulate long UMLAL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply signed accumulate long SMLAL{cond}{S} RdLo, RdHi, Rm, Rs
Compare CMP{cond} Rd, <Oprnd2>
Compare negative CMN{cond} Rd, <Oprnd2>
Logical Test TST{cond} Rn, <Oprnd2>
Test equivalence TEQ{cond} Rn, <Oprnd2>
AND AND{cond}{S} Rd, Rn, <Oprnd2>
EOR EOR{cond}{S} Rd, Rn, <Oprnd2>
ORR ORR{cond}{S} Rd, Rn, <Oprnd2>
Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>
Branch Branch B{cond} Tabel
Branch with link BL{cond} label
Branch and exchange instruction set BX{cond} Rn
Load Word LDR{cond} Rd, <a_mode2>
Word with user-mode privilege LDR{cond}T Rd, <a_mode2P>
Byte LDR{cond}B Rd, <a_mode2>
Byte with user-mode privilege LDR{cond}BT Rd, <a_mode2P>
Byte signed LDR{cond}SB Rd, <a_mode3>
Halfword LDR{cond}H Rd, <a_mode3>
Halfword signed LDR{cond}SH Rd, <a_mode3>
Multiple block data operations -
. Increment before LDM{cond}IB Rd{!}, <reglist>{A}
. Increment after LDM{cond}IA Rd{!'}, <reglist>{A}
. Decrement before LDM{cond}DB Rd{!'}, <reglist>{A}
1-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Introduction

Table 1-2 ARM instruction summary (continued)

Operation Assembly syntax

. Decrement after LDM{cond}DA Rd{!}, <reglist>{A}

. Stack operation LDM{cond}<a_mode4L> Rd{!}, <reglist>

. Stack operation, and restore CPSR LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>A

. Stack operation with user registers LDM{cond}<a_mode4L> Rd{!}, <reglist>A
Store Word STR{cond} Rd, <a_mode2>

Word with user-mode privilege STR{cond}T Rd, <a_mode2P>

Byte STR{cond}B Rd, <a_mode2>

Byte with user-mode privilege STR{cond}BT Rd, <a_mode2P>

Halfword STR{cond}H Rd, <a_mode3>

Multiple block data operations -

. Increment before STM{cond}IB Rd{!}, <reglist>{A}

. Increment after STM{cond}IA Rd{!}, <reglist>{A}

. Decrement before STM{cond}DB Rd{!}, <reglist>{A}

. Decrement after STM{cond}DA Rd{!}, <reglist>{A}

. Stack operation STM{cond}<a_mode4S> Rd{!}, <reglist>

. Stack operation with user registers STM{cond}<a_mode4S> Rd{!}, <reglist>A
Swap Word SWP{cond} Rd, Rm, [Rn]

Byte SWP{cond}B Rd, Rm, [Rn]
Coprocessors Data operation CDP{cond} p<cpnum>, <opl>, CRd, CRn, CRm, <op2>

Moveto ARM register from coprocessor

MRC{cond} p<cpnum>, <opl>, Rd, CRn, CRm, <op2>

Move to coprocessor from ARM register

MCR{cond} p<cpnum>, <opl>, Rd, CRn, CRm, <op2>

Load

LDC{cond} p<cpnum>, CRd, <a_mode5>

Store

STC{cond} p<cpnum>, CRd, <a_mode5>

Software interrupt

SWI 24bit_Imm

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

1-15

Introduction

Addressing modes

The addressing modes are procedures shared by different instructions for generating
values used by the instructions. The five addressing modes used by the ARM7TDMI

processor are:

Mode 1 Shifter operands for data processing instructions.
Mode 2 L oad and store word or unsigned byte.

Mode 3 L oad and store halfword or load signed byte.
Mode 4 L oad and store multiple.

Mode 5 L oad and store coprocessor.

The addressing modes are listed with their types and mnemonics Table 1-3.

Table 1-3 Addressing modes

Addressing mode

Mode 2 <a_mode2>

Type or .

addressing mode Mnemonic or stack type
Immediate offset [Rn, #+/-12bit_Offset]
Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Pre-indexed offset -

Immediate [Rn, #+/-12bit_Offset]!
Register [Rn, +/-Rm]!
Scaled register [Rn, +/-Rm, LSL #5bit_shift_imm]!

[Rn, +/-Rm, LSR #5bit_shift_imm]!

[Rn, +/-Rm, ASR #5bit_shift_imm]!

[Rn, +/-Rm, ROR #5bit_shift_imm]!

[Rn, +/-Rm, RRX]!

Post-indexed offset -

1-16

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Introduction

Table 1-3 Addressing modes (continued)

Type or

Addressing mode addressing mode

Mnemonic or stack type

Immediate [Rn], #+/-12bit_Offset
Register [Rn], +/-Rm
Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Mode 2, privileged <a_mode2P> Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Post-indexed offset -

Immediate [Rn], #+/-12bit_Offset
Register [Rn], +/-Rm
Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

=3

[Rn, +/-Rm, RRX]

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 1-17

Introduction

Table 1-3 Addressing modes (continued)

Addressing mode

Type or
addressing mode

Mnemonic or stack type

Mode 3, <a_mode3>

Immediate offset [Rn, #+/-8bit_Offset]
Pre-indexed [Rn, #+/-8bit_Offset]!
Post-indexed [Rn], #+/-8bit_Offset
Register [Rn, +/-Rm]
Pre-indexed [Rn, +/-Rm]!
Post-indexed [Rn], +/-Rm

Mode 4, load <a_mode4L >

IA, increment after

FD, full descending

IB, increment before

ED, empty descending

DA, decrement after

FA, full ascending

DB decrement before

EA, empty ascending

Mode 4, store <a_mode4S>

IA, increment after

FD, full descending

IB, increment before

ED, empty descending

DA, decrement after

FA, full ascending

DB decrement before

EA, empty ascending

Mode 5, coprocessor data transfer <a_mode5>

I mmediate offset

[Rn, #+/-(8bit_Offset«4)]

Pre-indexed

[Rn, #+/-(8bit_Offset«4)]!

Post-indexed

[Rn], #+/-(8bit_Offset«4)

1-18

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Introduction

Operand 2

An operand is the part of the instruction that references data or a peripheral device.
Operand 2 islisted in Table 1-4.

Table 1-4 Operand 2

Operand Type Mnemonic

Operand 2 <Oprnd2> Immediate value #32bit_Imm
Logical shift left Rm LSL #5bit_Imm
Logical shift right Rm LSR #5bit_Tmm

Arithmetic shift right ~ Rm ASR #5bit_Imm

Rotate right Rm ROR #5bit_Imm
Register Rm

Logical shift left Rm LSL Rs
Logical shift right Rm LSR Rs

Arithmetic shift right ~ Rm ASR Rs

Rotate right Rm ROR Rs

Rotateright extended Rm RRX

Fields
Fieldsarelisted in Table 1-5.

Table 1-5 Fields

Type Suffix Sets Bit
Fidd {fidd} _c Control field mask bit 3
_f Flags field mask bit 0
_S Status field mask bit 1
X Extension field mask bit 2

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 1-19

Introduction

Condition fields

Condition fields are listed in Table 1-6.

Table 1-6 Condition fields

Field type Suffix Description Condition
Condition{cond} EQ Equal Z set
NE Not equal Z clear
Cs Unsigned higher, or same C set
CcC Unsigned lower Cclear
MI Negative N set
PL Positive, or zero N clear
VS Overflow V set
VC No overflow V clear
HI Unsigned higher Cset, Z clear
LS Unsigned lower, or same Cclear, Z set
GE Greater, or equal N=V (N and V set or N and V clear)
LT Lessthan N<>V (N setand V clear) or (N clear and V set)
GT Greater than Z clear, N=V (N and V setor N and V clear)
LE Less than, or equal Z set or N<>V (N set and V clear) or (N clear and V set)
AL Always Flag ignored

1.4.3 Thumb instruction summary

The Thumb instruction set formats are shown in Figure 1-6 on page 1-21.

Refer to the ARM Architectural Reference Manual for moreinformation about the ARM
instruction set formats.

1-20

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Move shifted register

Add and subtract

Move, compare, add, and subtract
immediate

ALU operation

High register operations and branch
exchange

PC-relative load

Load and store with relative offset

Load and store sign-extended byte and
halfword

Load and store with immediate offset

Load and store halfword

SP-relative load and store

Load address

Add offset to stack pointer

Push and pop registers

Multiple load and store

Conditional branch

Software interrupt

Unconditional branch

Long branch with link

Introduction

Format 1514131211109 8 7 6 5 4 3 2 1 0
o1 | |ololo| op | Offsets Rs | Rd
02 ||ololol1/1]10op of';rgm Rs Rd
03 ||olol1]| op| Rd Offset8
04 ||o/1lolojolo| op Rs | Rd
05 ||0/1]0/0|0|1| Op H1H2 RsHs | RdHd
06 ||0o/1]o]o/1| Rd Words
07 | |o/1lol1/L|B]0o| Ro | Rb | Rd
08 ||o|1]/0|1/HIS|1| Ro | Rb | Rd
09 | |o[1]1/B|L| Offsets Rb | Rd
10 ||1]o0]olo|L| Offsets Rb | Rd
1 ||1]0]ol1|L| Rd Word8
12 ||1]0]/1]0sP Rd Word8
13 | 1]ol1]1/0]o]olols SWord?
14 | [1/0/1/1]L|1/0|R Rlist
15 | [1/1]0lo/L| Rb Riist
16 111]01 Cond Softset8
17 | [11]ol1]1]1]1]1 Value8
18 |[1]1]1]0]0 Offset11
19 | [1]1]1]1/H Offset

Format 1514131211109 8 7 6 5 4 3 2 1 0

Figure 1-6 Thumb instruction set formats

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

1-21

Introduction

The Thumb instruction set summary islisted in Table 1-7.

Table 1-7 Thumb instruction set summary

Operation Assembly syntax

Move Immediate MOV Rd, #8bit_Imm
High to Low MOV Rd, Hs
Low to High MOV Hd, Rs
High to High MOV Hd, Hs

Arithmetic Add ADD Rd, Rs, #3bit_Imm
Add Low, and Low ADD Rd, Rs, Rn
Add Highto Low ADD Rd, Hs
Add Low to High ADD Hd, Rs
Add High to High ADD Hd, Hs
Add Immediate ADD Rd, #8bit_Imm
Add Valueto SP ADD SP, #7bit_Imm ADD SP, #-7bit_Imm
Add with carry ADC Rd, Rs
Subtract SUB Rd, Rs, Rn SUB Rd, Rs, #3bit_Imm
Subtract Immediate SUB Rd, #8bit_Imm
Subtract with carry SBC Rd, Rs
Negate NEG Rd, Rs
Multiply MUL Rd, Rs
Compare Low, and Low CMP Rd, Rs
Compare Low, and High CMP Rd, Hs
Compare High, and Low CMP Hd, Rs
Compare High, and High CMP Hd, Hs
Compare Negative CMN Rd, Rs
Compare Immediate CMP Rd, #8bit_Imm

Logical AND AND Rd, Rs

1-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Introduction

Table 1-7 Thumb instruction set summary (continued)

Operation Assembly syntax
EOR EOR Rd, Rs
OR ORR Rd, Rs
Bit clear BIC Rd, Rs
Move NOT MVN Rd, Rs
Test bits TST Rd, Rs
Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm LSL Rd, Rs
Logical shift right LSR Rd, Rs, #5bit_shift_imm LSR Rd, Rs
Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm ASR Rd, Rs
Rotate right ROR Rd, Rs
Branch Conditiona -
. if Z set BEQ label
. if Z clear BNE label
. if Cset BCS Tabel
. if Cclear BCC Tabel
. if N set BMI label
. if N clear BPL label
. if V set BVS Tabel
. if V clear BVC Tabel
. if Csetand Z clear BHI Tabel
. if Cclear and Z set BLS Tabel

. if (N setand V set) or (N clear and V clear)) BGE Tabel

. if (NsetandV clear) orif (N clearand V set)) BLT label

. if (Zclearand ((N or V set) or (N or V clear))) BGT label
. if (Zsetor ((NsetandV clear) or (N clearand BLE label
V set)))

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 1-23

Introduction

Table 1-7 Thumb instruction set summary (continued)

Operation Assembly syntax
Unconditional B label
Long branch with link BL Tabel
Optional state change -
. to addressheldin Lo reg BX Rs
. to address held in Hi reg BX Hs

Load With immediate offset -
. word LDR Rd, [Rb, #7bit_offset]
. halfword LDRH Rd, [Rb, #6bit_offset]
. byte LDRB Rd, [Rb, #5bit_offset]
With register offset -
. word LDR Rd, [Rb, Ro]
. halfword LDRH Rd, [Rb, Ro]
. signed halfword LDRSH Rd, [Rb, Ro]
. byte LDRB Rd, [Rb, Ro]
. signed byte LDRSB Rd, [Rb, Rol
PC-relative LDR Rd, [PC, #10bit_Offset]
SP-relative LDR Rd, [SP, #10bit_Offset]
Address -
. using PC ADD Rd, PC, #10bit_Offset
. using SP ADD Rd, SP, #10bit_Offset
Multiple LDMIA Rb!, <reglist>

Store With immediate offset -
. word STR Rd, [Rb, #7bit_offset]
. halfword STRH Rd, [Rb, #6bit_offset]
. byte STRB Rd, [Rb, #5bit_offset]

1-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Introduction

Table 1-7 Thumb instruction set summary (continued)

Operation Assembly syntax
With register offset -
. word STR Rd, [Rb, Ro]
. halfword STRH Rd, [Rb, Ro]
. byte STRB Rd, [Rb, Ro]
SP-relative STR Rd, [SP, #10bit_offset]
Multiple STMIA Rb!, <reglist>
Push/Pop Push registers onto stack PUSH <reglist>

Push LR, and registers onto stack

PUSH <reglist, LR>

Pop registers from stack

POP <reglist>

Pop registers, and pc from stack

POP <reglist, PG

Software Interrupt

SWI 8bit_Imm

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 1-25

Introduction

1-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Chapter 2
Programmer’s Model

This chapter describes the ARM7TDMI core programmer’s model. It contains the
following sections:

. About the programmer’s model on page 2-2
. Processor operating states on page 2-3

. Memory formats on page 2-4

. Data types on page 2-6

. Operating modes on page 2-7

. Registers on page 2-8

. The program status registers on page 2-13

. Exceptions on page 2-16

. Interrupt latencies on page 2-23

. Reset on page 2-24.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved.

2-1

Programmer’s Model

2.1 About the programmer’s model

The ARM7TDMI processor core implements ARM architecture v4T, which includes
the 32-bit ARM instruction set, and the 16-bit Thumb instruction set. The programmer’s
model is described in the ARM Architecture Reference Manual.

2-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Programmer’s Model

2.2 Processor operating states

The ARM7TDMI processor has two operating states:
ARM 32-hit, word-aligned ARM instructions are executed in this state.
Thumb 16-bit, halfword-aligned Thumb instructions are executed in this state.

In Thumb state, the Program Counter (PC) uses bit 1 to select between alternate
halfwords.

Note ——

Transition between ARM and Thumb states does not affect the processor mode or the
register contents.

2.2.1 Switching state

The operating state of the ARM7TDMI core can be switched between ARM state and
Thumb state using the BX instruction. This is described in the ARM Architecture
Reference Manual.

All exception handling isentered in ARM state. If an exception occursin Thumb state,
the processor revertsto ARM state. The transition back to Thumb state occurs
automatically on return. An exception handler can change to Thumb state but it must
return to ARM state to allow the exception handler to terminate correctly.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 2-3

Programmer’s Model

2.3 Memory formats

23.1 Little-endian

31

The ARM7TDMI processor views memory as a linear collection of bytes numbered in
ascending order from zero. For example:

. bytes zero to three hold the first stored word
. bytes four to seven hold the second stored word.

The ARM7TDMI processor isbi-endian and can treat wordsin memory asbeing stored
in either:

. Little-endian.

. Big-Endian on page 2-5

Note
Little-endian istraditionally the default format for ARM processors.

The endian format of a CPU dictates where the most significant byte or digits must be
placed in aword. Because humbers are cal cul ated by the CPU starting with the least
significant digits, little-endian numbers are already set up for the processing order.

Endian configuration has no relevance unless data is stored as words and then accessed
in smaller sized quantities (halfwords or bytes).

In little-endian format, the lowest addressed byte in aword is considered the
|east-significant byte of the word and the highest addressed byte isthe most significant.
So the byte at address 0 of the memory system connects to data lines 7 through O.

For aword-aligned address A, Figure 2-1 shows how the word at address A, the
halfword at addresses A and A+2, and the bytes at addresses A, A+1, A+2, and A+3
map on to each other when the core is configured as little-endian.

24 23 16 15 8 7 0

Word at address A

Halfword at address A+2 Halfword at address A

Byte at address A+3 | Byte at address A+2 | Byte at address A+1 Byte at address A

Figure 2-1 Little-endian addresses of bytes and halfwords within words

2-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Programmer’s Model

2.3.2 Big-Endian

In big-endian format, the ARM7TDMI processor stores the most significant byte of a
word at the lowest-numbered byte, and the least significant byte at the

highest-numbered byte. So the byte at address 0 of the memory system connectsto data
lines 31 through 24.

For aword-aligned address A, Figure 2-2 shows how the word at address A, the
halfword at addresses A and A+2, and the bytes at addresses A, A+1, A+2, and A+3
map on to each other when the core is configured as big-endian.

31 24 23 16 15 8 7 0
Word at address A
Halfword at address A Halfword at address A+2
Byte at address A Byte at address A+1 | Byte at address A+2 | Byte at address A+3

Figure 2-2 Big-endian addresses of bytes and halfwords within words

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 2-5

Programmer’s Model

2.4 Data types
The ARM7TDMI processor supports the following data types:
. words, 32-bit
. halfwords, 16-bit
. bytes, 8-bit.
You must align these as follows:
. word quantities must be aligned to four-byte boundaries
. halfword quantities must be aligned to two-byte boundaries
. byte quantities can be placed on any byte boundary.
Note
Memory systems are expected to support all datatypes. In particular, the system must
support subword writes without corrupting neighboring bytes in that word.
2-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Programmer’s Model

2.5 Operating modes

The ARM7TDMI processor has seven modes of operation:

User mode is the usual ARM program execution state, and is used for executing
most application programs.

Fast Interrupt (FIQ) mode supports a data transfer or channel process.
Interrupt (IRQ) mode is used for general-purpose interrupt handling.
Supervisor mode is a protected mode for the operating system.

Abort mode is entered after a data or instruction Prefetch Abort.
System mode is a privileged user mode for the operating system.

Note

You can only enter System mode from another privileged mode by modifying the
mode bit of the Current Program Status Register (CPSR).

Undefined mode is entered when an undefined instruction is executed.

Modes other than User mode are collectively known as privileged modes. Privileged
modes are used to service interrupts or exceptions, or to access protected resources.

Each register hasamode identifier aslisted in Table 2-1.

Table 2-1 Register mode identifiers

Mode Mode identifier

User usr

Fast interrupt ~ fiq

Interrupt irq
Supervisor svc
Abort abt
System sys

Undefined und

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 2-7

Programmer’s Model

2.6

26.1

Registers

The ARM7TDMI processor has atotal of 37 registers:
. 31 general-purpose 32-bit registers
. 6 status registers.

Theseregistersare not all accessible at the sametime. The processor state and operating
mode determine which registers are available to the programmer.

The ARM-state register set

In ARM state, 16 general registers and one or two status registers are accessible at any
onetime. In privileged modes, mode-specific banked registersbecome available. Figure
2-3 on page 2-10 shows which registers are available in each mode.

The ARM-state register set contains 16 directly-accessibleregisters, rOto r15. A further
register, the CPSR, contains condition code flags and the current mode bits. Registers
rO to r13 are general-purpose registers used to hold either data or address values.
Registers r14 and r15 have the following special functions:

Link register Register 14 isused as the subroutine Link Register (LR).

Register r14 receives a copy of r15when aBranchwith Link (BL)
instruction is executed.

At all other times you can treat r14 as a general-purpose register.
The corresponding banked registersril4 svc, r14 irq, r14 fiq,
ri4 abt and r14 und are similarly used to hold the return values
of r15 when interrupts and exceptions arise, or when BL
instructions are executed within interrupt or exception routines.

Program counter Register 15 holds the PC.

In ARM state, bits[1:0] of r15 are undefined and must beignored.
Bits[31:2] contain the PC.

In Thumb state, bit [0] is undefined and must be ignored. Bits
[31:1] contain the PC.

By convention, r13 is used as the Stack Pointer (SP).

In privileged modes, another register, the Saved Program Status Register (SPSR), is
accessible. This contains the condition code flags and the mode bits saved as aresult of
the exception which caused entry to the current mode.

Banked registers are discrete physica registersin the core that are mapped to the
availabl e registers depending on the current processor operating mode. Banked register
contents are preserved across operating mode changes.

2-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Programmer’s Model

FIQ mode has seven banked registers mapped to r8—14 (r8_figq—r14 fiq).
In ARM state, many FIQ handlers do not have to save any registers.

TheUser, IRQ, Supervisor, Abort, and undefined modes each have two banked registers
mapped to r13 and r14, alowing a private SP and LR for each mode.

System mode shares the same registers as User mode.

Figure 2-3 shows the ARM-state registers.

ARM-state general registers and program counter

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
1 1 1 1 1 1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
r6 r6 r6 r6 r6 r6
r7 r7 r7 r7 r7 7
r8 r8_fiq r8 r8 r8 r8
r9 r9_fiq r9 r9 r9 r9
r10 r10_fiq r10 r10 r10 r10
r1 r11_fiq r1 1 r1 r
r2 r12_fiq r12 r12 r2 r2
r13 r13_fiq r13_svc r13_abt r13_irq r13_und
r14 r14_fiq r14_svc r14_abt r14_irq r14_und
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)

ARM-state program status registers
’ CPSR ‘ CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Il = banked register

Figure 2-3 Register organization in ARM state

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 2-9

Programmer’s Model

2.6.2

The Thumb-state register set

The Thumb-state register set is a subset of the ARM-state set. The programmer has
access to:

8 general registers, ro—7

the PC
the SP
theLR
the CPSR.

There are banked SPs, LRs, and SPSRs for each privileged mode. Thisregister set is
shown in Figure 2-4.

Thumb-state general registers and program counter

System and User FIQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
ré ré ré ré ré ré
r7 r7 r7 r7 r7 r7
SP SP_fiq SP_svc SP_abt SP_irq SP_und
LR LR fig LR_svc LR_abt LR_irq LR_und
PC PC PC PC PC PC
Thumb-state program status registers
| cPsR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Il = banked register

Figure 2-4 Register organization in Thumb state

2-10

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Programmer’s Model

2.6.3 Therelationship between ARM-state and Thumb-state registers

The Thumb-state registers relate to the ARM-state registersin the following way:

Thumb-state rO—+7 and ARM-state rO—7 are identical

Thumb-state CPSR and SPSRs and ARM-state CPSR and SPSRs areidentical
Thumb-state SP maps onto the ARM -state r13

Thumb-state LR maps onto the ARM-state r14

Thumb-state pc maps onto the ARM -state pc (r15).

These relationships are shown in Figure 2-5.

Thumb state ARM state
r0 > ro
r1 > r1
r2 > r2
r3 > r3
r4 > r4
rs > rd
ré > ré
r7 > r7

r8

r9
r10
r11
r12

Stack pointer (SP)
Link register (LR)

Stack pointer (r13)
Link register (r14)

Y

Y

Program counter (PC) > PC (r15)
Current program
status register > CPSR
(CPSR)

Saved program status

register (SPSR) > SPSR

Figure 2-5 Mapping of Thumb-state registers onto ARM-state registers

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 2-11

Programmer’s Model

Note
RegistersrO—r7 are known as the low registers. Registers r8-r15 are known as the high
registers.

2.6.4 Accessing high registers in Thumb state

In Thumb state, the high registers, r8—15, are not part of the standard register set. The
assembly language programmer has limited access to them, but can use them for fast

temporary storage.

You can use special variants of the MOV instruction to transfer a value from alow
register, in the range r0—7, to ahigh register, and from a high register to alow register.
The CMP instruction allows you to compare high register values with low register
values. The ADD instruction enables you to add high register values to low register
values. For more details, please refer to the ARM Architecture Reference Manual.

2-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Programmer’s Model

2.7 The program status registers

The ARM7TDMI processor contains a CPSR and five SPSRs for exception handlers to
use. The program status registers:

. hold information about the most recently performed ALU operation
. control the enabling and disabling of interrupts
. set the processor operating mode.

The arrangement of bitsis shown in Figure 2-6.

Condition
code flags Reserved Control bits
| | | | | | \
31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 10
NZ[c|V]e|e]e]] « | 1| F| T |M4M3M2 M1 MO
Overflow Mode bits
——— Carry or borrow or extend —— State bit
-—— Zero — FIQ disable
Negative or less than IRQ disable
Figure 2-6 Program status register format
Note ———

To maintain compatibility with future ARM processors, you must not alter any of the
reserved bits. One method of preserving these bitsisto use aread-write-modify strategy
when changing the CPSR.

The remainder of this section describes:
. Condition code flags

. Control bits on page 2-14

. Reserved bits on page 2-15.

2.7.1 Condition code flags

TheN, Z, C, and V bitsare the condition code flags, you can set them by arithmetic and
logical operations. They can aso be set by MSR and LDM instructions. The
ARMT7TDMI processor tests these flags to determine whether to execute an instruction.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 2-13

Programmer’s Model

27.2

Control bits

All instructions can execute conditionally in ARM state. In Thumb state, only the
Branch instruction can be executed conditionally. For more information about
conditional execution, refer to the ARM Architecture Reference Manual.

The bottom eight bits of a PSR are known collectively as the control bits. They are the:
. interrupt disable bits

. T bit

. mode bits.

The control bits change when an exception occurs. When the processor is operating in
aprivileged mode, software can manipulate these bits.

Interrupt disable bits

The | and F bits are the interrupt disable bits:
. when the | bit is set, IRQ interrupts are disabled
. when the F bit is set, FIQ interrupts are disabled.

T bit

The T bit reflects the operating state:
. when the T bit is set, the processor is executing in Thumb state
. when the T bit is clear, the processor executing in ARM state.

The operating state is reflected on the external signal TBIT.

—— Caution

Never use an MSR instruction to force a change to the state of the T bit in the CPSR. If
you do this, the processor enters an unpredictable state.

2-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Mode bits

Programmer’s Model

Bits M[4:0] determine the processor operating mode as shown in Table 2-2. Not all
combinations of the mode bits define a valid processor mode, so take care to use only
the bit combinations shown.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb-state registers Visible ARM-state registers
10000 User ro—7, SP LR, PC, CPSR ro—r14, PC, CPSR
10001 FIQ r0—r7, SP_fig, LR_fig, PC, CPSR, SPSR_fiq r0—7, r8_fig—r14 fiq, PC, CPSR,
SPSR _fiq
10010 IRQ r0—r7, SP_irq,LR_irg, PC, CPSR, SPSR_irq r0-r12,r13 irq, r14_irq, PC, CPSR,
SPSR_irq
10011 Supervisor ro—7, SP_svc, LR_svc, PC, CPSR, r0—12,r13 svc, r14 svc, PC, CPSR,
SPSR_svc SPSR_svc
10111 Abort r0—r7, SP_abt, LR_abt, PC, CPSR, r0-r12, r13 abt, r14 abt, PC, CPSR,
SPSR_abt SPSR_abt
11011 Undefined r0—r7, SP_und, LR_und, PC, CPSR, r0-r12, r13 und, r14_und, PC, CPSR,
SPSR_und SPSR_und
11111 System ro—7, SP LR, PC, CPSR r0-r14, PC, CPSR
Anillegal value programmed into M[4:0] causes the processor to enter an
unrecoverable state. If this occurs, apply reset.
2.7.3 Reserved bits

Theremaining bitsin the PSRsare unused, but are reserved. When changing aPSR flag
or control bits, make sure that these reserved bits are not altered. Also, make sure that
your program does not rely on reserved bits containing specific values because future

processors might have these bits set to 1 or 0.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

2-15

Programmer’s Model

2.8 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example, to service an interrupt from a periphera. Before attempting to handle an
exception, the ARM7TDMI processor preserves the current processor state so that the
original program can resume when the handler routine has finished.

If two or more exceptionsarise simultaneously, the exceptionsare dealt with in thefixed
order given in Table 2-3.

This section provides details of the ARM7TDMI processor exception handling:

Exception entry and exit summary
Entering an exception on page 2-17
Leaving an exception on page 2-18

Fast interrupt request on page 2-18
Interrupt request on page 2-19

Software interrupt instruction on page 2-21
Undefined instruction on page 2-21
Exception vectors on page 2-21

Exception priorities on page 2-22.

2.8.1 Exception entry and exit summary

Table 2-3 summarizesthe pc value preserved in the relevant r14 on exception entry, and
the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception . . Previous state ARM r14_x
Return instruction - Remarks
or entry Thumb r14_x
BL MOV PC, R14 PC+4 PC+2 Where PC isthe address of the BL, SWI, or
undefined instruction fetch that had the
UDEF MOVS PC, R14_und PC+4 PC+2
PABT SUBS PC, R14_abt, #4 PC+4 PC+4
2-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Programmer’s Model

Table 2-3 Exception entry and exit (continued)

Exception . . Previous state ARM r14 x
Return instruction - Remarks

or entry Thumb r1l4_x
FIQ SUBS PC, R14_fiq, #4 PC+4 PC+4 Where PC is the address of the instruction

X that was not executed because the FIQ or
IRQ SUBS PC, Rl4_irq, #4 PC+4 PC+4 IRQ took priority
DABT SUBS PC, R14_abt, #8 PC+8 PC+8 Where PCistheaddress of theLoad or Store

instruction that generated the Data Abort

RESET Not applicable - - Thevaue saved inrl4_svc upon resetis

unpredictable

2.8.2 Entering an exception

The ARM7TDMI processor handles an exception as follows:

1.

3.
4,

Preserves the address of the next instruction in the appropriate LR.

When the exception entry isfrom ARM state, the ARM7TDMI processor copies
the address of the next instruction into the LR, current PC+4 or PC+8 depending
on the exception.

When the exception entry isfrom Thumb state, the ARM7TDMI processor writes
the value of the PC into the LR, offset by avalue, current PC+4 or PC+8
depending on the exception, that causes the program to resume from the correct
place on return.

The exception handler does not have to determine the state when entering an
exception. For example, in the case of a SWI, MOVS PC, rl4_svc alwaysreturnsto
the next instruction regardless of whether the SWI was executed in ARM or
Thumb state.

Copies the CPSR into the appropriate SPSR.
Forces the CPSR mode bits to a value that depends on the exception.

Forces the PC to fetch the next instruction from the relevant exception vector.

The ARM7TDMI processor can also set theinterrupt disable flagsto prevent otherwise
unmanageabl e nestings of exceptions.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 2-17

Programmer’s Model

Note

Exceptions are always entered in ARM state. When the processor isin Thumb state and
an exception occurs, the switch to ARM state takes place automatically when the
exception vector address is loaded into the PC. An exception handler might change to
Thumb state but it must returnto ARM state to allow the exception handler to terminate
correctly.

2.8.3 Leaving an exception

When an exception is completed, the exception handler must:

1. MovetheLR, minusan offset to the PC. The offset varies according to the type
of exception, as shown in Table 2-3 on page 2-16.

2. Copy the SPSR back to the CPSR.

3. Clear theinterrupt disable flags that were set on entry.

Note

The action of restoring the CPSR from the SPSR automatically resetsthe T bit to
whatever value it held immediately prior to the exception.

2.8.4 Fastinterrupt request

The Fast Interrupt Request (FIQ) exception supports data transfers or channel
processes. In ARM state, FIQ mode has eight banked registersto remove the
requirement for register saving. This minimizes the overhead of context switching.

An FIQ is externally generated by taking the nFI Q input LOW. The input passes into
the core through a synchronizer.

I rrespective of whether exception entry isfrom ARM state or from Thumb state, an FIQ
handler returns from the interrupt by executing:

SUBS PC,R14_fiq,#4

FIQ exceptions can be disabled within a privileged mode by setting the CPSR F flag.
When the F flag is clear, the ARM7TDMI processor checks for a LOW level on the
output of the FIQ synchronizer at the end of each instruction.

2-18

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Programmer’s Model

2.8.5 Interrupt request

2.8.6 Abort

The Interrupt Request (IRQ) exception isanormal interrupt caused by aLOW level on
the nlRQ input. IRQ has alower priority than FIQ, and is masked on entry to an FIQ
sequence. As with the nFI Q input, nlRQ passes into the core through a synchronizer.

Irrespective of whether exception entry is from ARM state or Thumb state, an IRQ
handler returns from the interrupt by executing:

SUBS PC,R14_irq,#4

You can disable IRQ at any time, by setting the | bit in the CPSR from a privileged
mode.

An abort indicates that the current memory access cannot be completed. An abort is
signaled by the external ABORT input. The ARM7TDM I processor checksfor the abort
exception at the end of memory access cycles.

The abort mechanism allows the implementation of a demand-paged virtual memory
system. In such asystem, the processor isallowed to generate arbitrary addresses. When
the data at an addressis unavailable, the Memory Management Unit (MMU) signalsan
abort.

The abort handler must then:
. Work out the cause of the abort and make the requested data available.

. Load the instruction that caused the abort using an LDR Rn, [R14_abt,#-8]
instruction to determine whether that instruction specifies base register
write-back. If it does, the abort handler must then:

— determine from the instruction what the offset applied to the base register
by the write-back was

— apply the opposite offset to the value that will be reloaded into the base
register when the abort handler returns.

This ensures that when the instruction isretried, the base register will have been
restored to the value it had when the instruction was originally executed.

The application program needs no knowledge of the amount of memory availableto it,
nor isits state in any way affected by the abort.

There are two types of abort:
. aPrefetch Abort occurs during an instruction prefetch
. aData Abort occurs during a data access.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 2-19

Programmer’s Model

Prefetch Abort

When a Prefetch Abort occurs, the ARM7TDMI processor marks the prefetched
instruction as invalid, but does not take the exception until the instruction reaches the
Execute stage of the pipeline. If theinstruction is not executed, for example because it
failsits condition codes or because a branch occurs whileit isin the pipeline, the abort
does not take place.

After dealing with the reason for the abort, the handler executes the following
instruction irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data Abort
When a Data Abort occurs, the action taken depends on the instruction type:

. Single data transfer instructions (LDR and STR). If write back base register is
specified by the instruction then the abort handler must be aware of this. In the
case of aload instruction the ARM7TDMI processor prevents overwriting of the
destination register with the loaded data.

. Swap instruction (SWP):
— onaread access suppresses the write access and the write to the destination
register
— onawrite access suppresses the write to the destination register.

. Block data transfer instructions (LDM and STM) complete. When write-back is
specified, the base register is updated.

If the base register isin the transfer list and has already been overwritten with
loaded data by the time that the abort is indicated then the base register revertsto
the origina value. The ARM7TDMI processor prevents all register overwriting
with loaded data after an abort isindicated. This means that the final value of the
base register is always the written-back value, if write-back is specified, at its
original value. It also meansthat the ARM7TDMI core always preservesrl5in
an aborted LDM instruction, because r15 is always either the last register in the
transfer list or not present in the transfer list.

After fixing the reason for the abort, the handler must execute the following return
instruction irrespective of the processor operating state at the point of entry:

SUBS PC,R14_abt,#8

This action restores both the PC and the CPSR, and retries the aborted instruction.

2-20

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Programmer’s Model

2.8.7 Software interrupt instruction

The Software Interrupt instruction (SWI) is used to enter Supervisor mode, usually to
request a particular supervisor function. The SWI handler reads the opcode to extract
the SWI function number.

A SWI handler returns by executing the following irrespective of the processor
operating state:

MOVS PC, R14_svc

Thisaction restoresthe PC and CPSR, and returnsto the instruction foll owing the SWI.

2.8.8 Undefined instruction

When the ARM7TDMI processor encounters an instruction that neither it, nor any
coprocessor in the system can handle, the ARM7TDMI core takes the undefined
instruction trap. Software can use this mechanism to extend the ARM instruction set by
emulating undefined coprocessor instructions.

After emulating the failed instruction, the trap handler executes the following
irrespective of the processor operating state:

MOVS PC,R14_und

This action restores the CPSR and returns to the next instruction after the undefined
instruction.

For more information about undefined instructions, seethe ARM Architecture Reference
Manual.

2.8.9 Exception vectors

Table 2-4 lists the exception vector addresses. In thistable, | and F represent the
previous value of the IRQ and FIQ interrupt disable bits respectively in the CPSR.

Table 2-4 Exception vectors

Address Exception Mode on entry | state on entry F state on entry
0x00000000 Reset Supervisor Set Set

0x00000004 Undefined instruction Undefined Set Unchanged
0x00000008 Software interrupt Supervisor Set Unchanged
0x0000000C Prefetch Abort Abort Set Unchanged

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 2-21

Programmer’s Model

Table 2-4 Exception vectors (continued)

Address Exception Mode on entry | state on entry F state on entry
0x00000010 Data Abort Abort Set Unchanged
0x00000014 Reserved Reserved - -

0x00000018 IRQ IRQ Set Unchanged
0x0000001C FIQ FIQ Set Set

2.8.10 Exception priorities

When multiple exceptions arise at the sametime, afixed priority system determinesthe
order in which they are handled. The priority order islisted in Table 2-5.

Table 2-5 Exception priority order

Priority

Exception

Highest

Reset

Data Abort

FIQ

IRQ

Prefetch Abort

Lowest

Undefined instruction and SWI

Some exceptions cannot occur together:

The undefined instruction and SWI exceptions are mutualy exclusive. Each
corresponds to a particular, non-overlapping, decoding of the current instruction.

When FIQs are enabled, and a Data Abort occurs at the sametime as an FIQ, the
ARM7TDMI processor entersthe Data Abort handler, and proceedsimmediately

to the FIQ vector.

A normal return from the FIQ causes the Data Abort handler to resume execution.

Data Aborts must have higher priority than FIQs to ensure that the transfer error
does not escape detection. You must add the time for this exception entry to the
worst-case FIQ latency calculationsin asystem that uses aborts to support virtual

memory.

2-22

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Programmer’s Model

2.9 Interrupt latencies

The calculations for maximum and minimum latency are described in:
. Maximum interrupt latencies
. Minimum interrupt latencies.

2.9.1 Maximum interrupt latencies

When FIQs are enabled, the worst-case latency for FIQ comprises a combination of:

T syncmax The longest time the reguest can take to pass through the synchronizer.
Tsynemax is four processor cycles.

Tidm The time for the longest instruction to complete. The longest instruction
isan LDM that loads al the registersincluding the PC. T|qm is 20 cycles
in azero wait state system.

Texc Thetime for the Data Abort entry. T iSthree cycles.

Ttig Thetime for FIQ entry. Triq is two cycles.

Thetotal latency is therefore 29 processor cycles, just over 0.7 microsecondsin a
system that uses a continuous 40MHz processor clock. At the end of thistime, the
ARMT7TDMI processor executes the instruction at ox1c.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ,
having higher priority, can delay entry into the IRQ handling routine for an arbitrary
length of time.

2.9.2 Minimum interrupt latencies

The minimum latency for FIQ or IRQ is the shortest time the request can take through
the synchronizer, Tgynemin, PIUS Trig, atotal of five processor cycles.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 2-23

Programmer’s Model

2.10 Reset

When the nRESET signal goes LOW areset occurs, and the ARM7TDMI core
abandons the executing instruction and continues to increment the address bus as if still
fetching word or halfword instructions. nM REQ and SEQ indicates internal cycles
during thistime.

When nRESET goes HIGH again, the ARM7TDMI processor:

1. OverwritesR14 svcand SPSR_svc by copying the current values of the PC and
CPSR into them. The values of the PC and CPSR are indeterminate.

2. ForcesM[4:0] to b10011, Supervisor mode, setsthe | and F bits, and clearsthe
T-bit in the CPSR.

3. Forcesthe PC to fetch the next instruction from address 0x00.
4. Revertsto ARM state if necessary and resumes execution.
After reset, all register values except the PC and CPSR are indeterminate.

More information is provided in Reset sequence after power up on page 3-32.

2-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Chapter 3
Memory Interface

This chapter describes the ARM7TDMI processor memory interface. It contains the
following sections:

. About the memory interface on page 3-2

. Bus interface signals on page 3-3

. Bus cycle types on page 3-4

. Addressing signals on page 3-11

. Address timing on page 3-14

. Data timed signals on page 3-17

. Stretching access times on page 3-29

. Privileged mode access on page 3-31

. Reset sequence after power up on page 3-32.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 3-1

Memory Interface

3.1 About the memory interface

The ARM7TDMI processor has a Von Neumann architecture, with asingle 32-bit data
bus carrying both instructions and data. Only load, store, and swap instructions can
access data from memory.

3-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

3.2 Bus interface signals

Memory Interface

The signalsinthe ARM7TDMI processor bus interface can be grouped into four

categories:

. clocking and clock control
. address class signals

. memory request signals

. datatimed signals.

The clocking and clock control signals are:

. MCLK

. nWAIT

. ECLK

. NnRESET.
The address class signals are:
. A[31:0]

. nRW

« MAS1:0]
. nOPC

. NTRANS
. LOCK

. TBIT.

The memory request signals are:

« nMREQ

. SEQ.

The datatimed signals are:
. D[31:0]

« DIN[31L0]

. DOUTI[31:0]

. ABORT

. BL[3:0].

The ARM7TDMI processor uses both therising and falling edges of MCLK.

Bus cycles can be extended using the nWAIT signal. This signal is described in
Stretching access times on page 3-29. All other sections of this chapter describe a

simple system in which nWAIT is permanently HIGH.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

3-3

Memory Interface

3.3

Bus cycle types

The ARM7TDMI processor businterfaceis pipelined. Thisgivesthe maximum timefor
amemory cycle to decode the address and respond to the access request:

memory request signals are broadcast in the bus cycle ahead of the bus cycleto
which they refer

address class signals are broadcast half a clock cycle ahead of the bus cycle to
which they refer.

A single memory cycle is shown in Figure 3-1.

MCLK J

APE
e I X X X X
Al31:0] _X X X X X

. N\ I\ I\ I\ [
D[31:0] —()))) (D—

Figure 3-1 Simple memory cycle

The ARM7TDMI processor businterface can perform four different types of buscycle:

anonseguential cycle requestsatransfer to or from an addresswhich isunrelated
to the address used in the preceding cycle

asequential cycle requests a transfer to or from an address which is either the
same, one word, or one halfword greater than the address used in the preceding

cycle

an internal cycle does not require atransfer becauseit is performing an internal
function, and no useful prefetching can be performed at the same time

a coprocessor register transfer cycle uses the data bus to communicate with a
coprocessor, but does not require any action by the memory system.

3-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Memory Interface

Bus cycle types are encoded on the nMREQ and SEQ signalsas listed in Table 3-1.

Table 3-1 Bus cycle types

nMREQ SEQ Buscycletype Description

0 0 N-cycle Nonsequential cycle

0 1 S-cycle Sequential cycle

1 0 I-cycle Internal cycle

1 1 C-cycle Coprocessor register transfer cycle

A memory controller for the ARM7TDMI processor must commit to a memory access
only on an N-cycle or an S-cycle.

3.3.1 Nonsequential cycles

A nonsequential cycleisthe simplest form of bus cycle, and occurs when the processor
requests a transfer to or from an address that is unrelated to the address used in the
preceding cycle. The memory controller must initiate a memory access to satisfy this
request.

The address class and (hM REQ and SEQ) signals that comprise an N-cycle are
broadcast on the bus. At the end of the next bus cycle the dataistransferred between the
CPU and the memory. It is not uncommon for amemory system to require alonger
accesstime (extending the clock cycle) for nonsequential accesses. Thisisto alow time
for full address decoding or to latch both arow and column address into DRAM. This
isillustrated in Figure 3-2 on page 3-6.

Note

In Figure 3-2 on page 3-6, NMREQ and SEQ are highlighted where they are valid to
indicate the N-cycle.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 3-5

Memory Interface

‘ N-cycle : S-cycle
MCLK
A[31:0] X a X atd
nMREQ ~ \ [
sea __/ [
nRAS \
nCAS
D[31:0] CD_

Figure 3-2 Nonsequential memory cycle

The ARM7TDMI processor can perform back-to-back, nonsequential memory cycles.
This happens, for example, when an STR instruction is executed. If you are designing a
memory controller for the ARM7TDMI core, and your memory system is unable to
cope with this case, usethe N\WAIT signal to extend the bus cycle to alow sufficient
cycles for the memory system. See Stretching access times on page 3-29.

3.3.2 Sequential cycles

Sequentid cycles are used to perform burst transfers on the bus. This information can
be used to optimize the design of amemory controller interfacing to a burst memory
device, such asaDRAM.

During asequential cycle, the ARM7TDMI processor requests a memory location that
is part of asequential burst. For thefirst cyclein the burst, the address can be the same
as the previous internal cycle. Otherwise the address is incremented from the previous
cycle

. for a burst of word accesses, the address is incremented by 4 bytes

. for aburst of halfword accesses, the address is incremented by 2 bytes.

Bursts of byte accesses are not possible.

A burst always starts with an N-cycle or a merged |S-cycle (see Nonsequential cycles
on page 3-5), and continueswith S-cycles. A burst comprisestransfers of the sametype.
The A[31:0] signal increments during the burst. The other address class signals are
unaffected by aburst.

3-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Memory Interface

The possible burst types arelisted in Table 3-2.

Table 3-2 Burst types

Burst type Address increment Cause

Word read 4 bytes ARMT7TDMIcore code fetches, or LDM instruction
Word write 4 bytes STM instruction
Halfwordread 2 bytes Thumb code fetches

All accesses in a burst are of the same data width, direction, and protection type. For
more details, see Addressing signals on page 3-11.

Memory systems can often respond faster to a sequential access and can require a
shorter access time compared to a nonsequential access. An example of aburst access
isshownin Figure 3-3.

A B— N-cycle —————————»«4-N-cycle »<-N-cycle »

Mok [] | | |
A[31:0] X a X Tata X Tat8 Xat+12
nMREQ ~ |
SEQ -/

nRAS \

NCAS \ \ \

D[31:0]

AN
N
AN
N
AN
~~

Figure 3-3 Sequential access cycles

3.3.3 Internal cycles

During aninternal cycle, the ARM7TDMI processor does not require amemory access,
asan internal function isbeing performed, and no useful prefetching can be performed
at the same time.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 3-7

Memory Interface

Where possible the ARM7TDMI processor broadcasts the address for the next access,
so that decode can start, but the memory controller must not commit to amemory
access. Thisis shown in Figure 3-4 and, is further described in Nonsequential memory
cycle on page 3-6.

N-cycle , S-cycle , l-cycle , C-cycle
MCLK | | |

AB1:0] a X Tat4 X Tat8 X ar12)

nMREQ] U
s\ [U
nRAS

ncAs __ [\

b1 —{ | <) -

Figure 3-4 Internal cycles

3.3.4 Merged IS cycles

Where possible, the ARM7TDMI processor performs an optimization on the bus to
allow extratime for memory decode. When this happens, the address of the next
memory cycleis broadcast on this bus during an internal cycle. This enablesthe
memory controller to decode the address, but it must not initiate a memory access
during this cycle. In amerged IS cycle, the next cycleisaseguential cycle to the same
memory location. This commits to the access, and the memory controller must initiate
the memory access. Thisis shown in Figure 3-5 on page 3-9.

3-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

<4—|-cycle—p

Memory Interface

4——S-cycle—»

MCLK J

I

AB1:0] X

nMREQ /

seq 1\ /

nRAS

nCAS

D[31:0]

Note

1L HXH

T 11

Figure 3-5 Merged IS cycle

When designing amemory controller, ensure that the design alsoworkswhen an I-cycle
is followed by an N-cycle to a different address. This sequence can occur during
exceptions, or during writes to the PC. It is essential that the memory controller does

not commit to the memory cycle during

3.3.5 Coprocessor register transfer cycles

an |-cycle.

During a coprocessor register transfer cycle, the ARM7TDMI processor uses the data
buses to transfer datato or from a coprocessor. A memory cycleisnot required and the
memory controller does not initiate a transaction. The memory system must not drive
onto the data bus during a coprocessor register transfer cycle.

The coprocessor interface is described in Chapter 4 Coprocessor Interface. The
coprocessor register transfer cycle is shown in Figure 3-6 on page 3-10.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

3-9

Memory Interface

¢-N-cycle »<-C-cycle »
MCLK | |

|
AB10] X X X
nMREQ | | .
.
X

seE@ 1/ L
D[31:0] < — —
Memory Memory Coprocessor

Figure 3-6 Coprocessor register transfer cycles

3.3.6 Summary of ARM memory cycle timing

A summary of ARM7TDMI processor memory cycle timing is shown in Figure 3-7.

<4 N-cycle— P« S-cycle >« I-cycle-»« C-cycle
Mok [| | | |

A[31:0] X a X a4 X Tat8 X X
nMREQ | / T
se@ ___ v/ o
nRAS \

nCAS \ \

D[31:0] CO—CD —

Figure 3-7 Memory cycle timing

3-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Memory Interface

3.4 Addressing signals

3.4.1 A[31:.0]

3.4.2 nRW

3.43 MAS[1:.0]

The address class signals are:

. A[31:0]
. nRW
. MAY 1:0]

. nOPC on page 3-12

. NTRANS on page 3-13
. LOCK on page 3-13

. TBIT on page 3-13.

A[31:0] isthe 32-bit address busthat specifiesthe addressfor the transfer. All addresses
are byte addresses, so aburst of word accesses results in the address busincrementing
by four for each cycle.

The address bus provides 4GB of linear addressing space.

When aword accessissignal ed the memory system ignoresthe bottom two bits, A[1:0],
and when a halfword access is signaled the memory system ignores the bottom bit,
A[Q].

All data values must be aligned on their natural boundaries. All words must be
word-aligned.

NRW specifiesthe direction of the transfer. NnRW indicates an ARM7TDMI processor
write cyclewhen HIGH, and an ARM7TDM| processor read cyclewhen LOW. A burst
of S-cyclesis aways either aread burst, or awrite burst. The direction cannot be
changed in the middle of aburst.

The MAS[1:0] bus encodes the size of the transfer. The ARM7TDMI processor can
transfer word, halfword, and byte quantities.

All writable memory in an ARM7TDMI processor based system must support the
writing of individual bytesto allow the use of the C Compiler and the ARM debug tool
chain, for example Multi-I1CE.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 3-11

Memory Interface

The address produced by the processor isalways a byte address. However, the memory
system must ignore the bottom redundant bits of the address. The significant address
bits are listed in Table 3-3.

Table 3-3 Significant address bits

MAS[1:0] Width Significant address bits

00 Byte A[31:0]
01 Halfword A[31:1]
10 Word A[31:2]
11 Reserved -

The size of transfer does not change during a burst of S-cycles.

The ARM7TDMI processor cannot generate bursts of byte transfers.

Note

During instruction accesses the redundant address bits are undefined. The memory
system must ignore these redundant bits.

A writable memory system for the ARM7TDMI processor must haveindividual byte
write enables. Both the C Compiler and the ARM debug tool chain, for example,
Multi-1CE, assume that arbitrary bytesin the memory can be written. If individual byte
write capability is not provided, you might not be able to use either of these tools
without data corruption.

3.4.4 nOPC
The nOPC output conveysinformation about the transfer. An MMU can use this signal
to determine whether an access is an opcode fetch or a data transfer. This signal can be
used with nTRANSto implement an access permission scheme. The meaning of NOPC
islisted in Table 3-4.
Table 3-4 nOPC
nOPC Opcode/data
0 Opcode
1 Data
3-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

3.4.5

3.4.6

3.4.7

NTRANS

LOCK

TBIT

Memory Interface

The nTRANS output conveys information about the transfer. An MMU can use this
signal to determine whether an access is from a privileged mode or User mode. This
signal can be used with nOPC to implement an access permission scheme. The
meaning of NTRANS islisted in Table 3-5.

Table 3-5 nTRANS encoding

nTRANS Mode
0 User
1 Privileged

Moreinformation relevant to thenTRANS signal and security is provided in Privileged
mode access on page 3-31.

LOCK isused to indicate to an arbiter that an atomic operation is being performed on
the bus. LOCK isnormally LOW, but is set HIGH to indicate that a SWP or SWPB
instruction is being performed. These instructions perform an atomic read/write
operation, and can be used to implement semaphores.

TBIT isused to indicate the operating state of the ARM7TDMI processor. When in:
. ARM dtate, the TBIT signal is LOW
. Thumb state, the TBIT signal isHIGH.

Note

Memory systems do not usually haveto use TBIT because M AS[1:0] indicatesthe size
of the instruction required.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 3-13

Memory Interface

3.5 Address timing

The ARM7TDMI processor address bus can operate in one of two configurations:

. pipelined
. depipelined.
Note

ARM Limited strongly recommends that pipelined addresstiming isusedin new design
to obtain optimum system performance.

ARM Limited strongly recommends that ALE istied HIGH and not used in new
designs.

Address depipelined configuration is controlled by the APE or ALE input signal. The
configuration is provided to ease the design of the ARM7TDMI processor in both
SRAM and DRAM-based systems.

APE affects the timing of the address bus A[31:0], plus nRW, MAS[1:0], LOCK,
nOPC, and NnTRANS.

In most systems, particularly a DRAM-based system, it is desirable to obtain the
addressfrom ARM7TDMI processor as early as possible. When APE isHIGH then the
ARM7TDMI processor address becomes valid after the rising edge of MCLK before
the memory cycle to which it refers. This timing allows longer periods for address
decoding and the generation of DRAM control signals. Figure 3-8 shows the effect on
the timing when APE isHIGH.

MCLK J

APE
nMREQ

$
SEQ €< X X X X_
A[31:0] X —— X X X
DI31:0] —— |) O i) . —

Figure 3-8 Pipelined addresses

SRAMsand ROMsrequirethat the addressis held stabl e throughout the memory cycle.
In a system containing SRAM and ROM only, APE can be tied permanently LOW,
producing the desired address timing. In this configuration the address becomes valid
after the falling edge of MCLK as shown in Figure 3-9 on page 3-15.

3-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Memory Interface

Note

The AMBA specification for Advanced High-performance Bus (AHB) and Advanced
System Bus (A SB) requires a pipelined address bus. This means that APE must be
configured HIGH.

MCLK J
APE
Mo X (X X X X_
A[31:0] X » X X X:
D310 ——_ 1) (L)>——_ — 1 — »—

Figure 3-9 Depipelined addresses

Many systems contain amixture of DRAM, SRAM and ROM. To cater for the different
address timing requirements, APE can be safely changed during the LOW phase of
MCLK. Typicaly, APE isheld at onelevel during aburst of sequential accessesto one
type of memory. When a nonsequential access occurs, the timing of most systems
enforce await state to allow for address decoding. As aresult of the address decode,
APE can be driven to the correct value for the particular bank of memory being
accessed. The value of APE can be held until the memory control signals denote
another nonsequential access.

Previous ARM processorsincluded the ALE signal, and thisis retained for backwards
compatibility. This signal also enables you to modify the address timing to achieve the
same results as APE, but in a dynamic manner. To obtain clean M CLK low timing of
the address bus by this mechanism, AL E must be driven HIGH with the falling edge of
MCLK, and LOW with therising edge of MCLK . ALE can simply be the inverse of
MCLK but thedelay from M CLK to AL E must be carefully controlled so that the Ty ¢
timing constraint is achieved. Figure 3-10 on page 3-16 shows how you can use ALE
to achieve SRAM compatible address timing. Refer to Chapter 7 AC and DC
Parameters for details of the exact timing constraints.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 3-15

Memory Interface

MCLK |
aPE
ALE T\ \ \ \ \ \
g X X X X X

A[31:0] X » X X X
CO—(0—

D[31:0] 1)

N
N~
N
N~

Figure 3-10 SRAM compatible address timing

Note

If ALE isto be used to change address timing, then you must tie APE HIGH. Similarly,
if APE isto be used, ALE must betied HIGH.

You can obtain better system performance when the address pipeline is enabled with
APE HIGH. This allowslonger time for address decoding.

3-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Memory Interface

3.6 Data timed signals

This section describes:

. D[31:0], DOUT[31:0], and DIN[31:0]

. ABORT on page 3-24

. Byte latch enables on page 3-24

. Byte and halfword accesses on page 3-26.

3.6.1 D[31:0], DOUT[31:0], and DIN[31:0]

The ARM7TDMI processor provides both unidirectional data buses, DIN[31:0],
DOUT([31:0], and abidirectiona databus, D[31:0]. The configuration input BUSEN is
used to select which isactive. Figure 3-11 shows the arrangement of the data buses and
bus-splitter logic.

Buffer control

EmbeddICE
Logic
< DIN[31:0]
ARM7TDMI >< D[31:0]
Latch =—p——— DOUT[31:0]
G
|—Latch controlQ

Figure 3-11 External bus arrangement

When the bidirectional data bus is being used then you must disable the unidirectional
buses by driving BUSEN LOW. Thetiming of the bus for three cycles, |oad-store-load,
is shown in Figure 3-12 on page 3-18.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 3-17

Memory Interface

read cycle , write cycle , read cycle |

MCLK | | | |

o109 ——— (A

Figure 3-12 Bidirectional bus timing

Unidirectional data bus

When BUSEN isHIGH, all instructions and input data are presented on the input data
bus, DIN[31:0]. The timing of this datais similar to that of the bidirectional bus when
ininput mode. Datamust be set up and held to thefalling edge of M CL K. For the exact
timing requirements refer to Chapter 7 AC and DC Parameters.

Inthisconfiguration, all output datais presented on DOUT[31:0]. Thevalue on thisbus
only changes when the processor performs a store cycle. Again, the timing of the data
issimilar to that of the bidirectional data bus. The value on DOUT|[31:0] changes after
the falling edge of MCLK.

The bus timing of a read-write-read cycle combination is shown in Figure 3-13.

read cycle , write cycle , read cycle
MCLK ™| | | [
DIN[31:0] X D1 X X D2 X
DOUT[31:0] X Dout
((
D[31:0] ~—» D1 Dout | X D2 X

Figure 3-13 Unidirectional bus timing

When the unidirectional data buses are being used, and BUSEN is HIGH, the
bidirectional bus, D[31:0], must be left unconnected.

The unidirectional buses are typically used internally in ASIC embedded applications.
Externally, most systems still require abidirectiona data busto interface to external
memory. Figure 3-14 on page 3-19 shows how you can join the unidirectional buses up
at the pads of an ASIC to connect to an external bidirectional bus.

3-18

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Memory Interface

nENOUT

PAD

DOUT[31:0] f— XDATA[31:0]

ARM7TDMI

DIN[31:0]

Figure 3-14 External connection of unidirectional buses

Bidirectional data bus

When BUSEN is LOW, the buffer between DIN[31:0] and D[31:0] isdisabled. Any
data presented on DIN[31:0] isignored. Also, when BUSEN is LOW, the value on
DOUT[31:0] isforced to 0x00000000.

When the ARM7TDMI processor is reading from memory DIN[31:0] is acting as an
input. During write cycles the ARM7TDMI core must output data. During phase 2 of
the previous cycle, thesignal NRW isdriven HIGH to indicate awrite cycle. During the
actual cycle, NENOUT isdriven LOW to indicate that the processor is driving D[31: 0]
as an output. Figure 3-15 on page 3-20 shows the bus timing with the data bus enabled.
Figure 3-16 on page 3-20 shows the circuit that exists in the processor for controlling
exactly when the external busis driven out.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 3-19

Memory Interface

MCLK ‘

<4——memory cycle—p

I N

A[31:0] X X
nRW / \
nENOUT \ /
D[31:0] (S—
Figure 3-15 Data write bus cycle
ARM7TDMI A
scan —
DBE
cell L]
A
data direction scan I
control from cell {_| nENouT
core
A
/)—| scan —
ENIN
cell 1o

A

read data to
core

_
write data
from core

TBE

D[31:0]

Figure 3-16 Data bus control circuit

3-20

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Memory Interface

The macrocell has an additional bus control signal, NENIN that allows the external
system to manually tristate the bus. In the simplest systems, nENIN can be tied LOW
and nENOUT can beignored. In many applications, when the externa databusisa
shared resource, greater control might berequired. In thissituation, nENIN can be used
to delay when the external busis driven.

Note

For backwards compatibility, DBE is also included. At the macrocell level, DBE and
NENIN have almost identical functionality and in most applications one can be tied to
keep the data bus enabled.

The processor has another output control signal called TBE. Thissignal isusually only
used during test and must be tied HIGH when not in use. When driven LOW, TBE
forces all tristateable outputs to high impedance, it is as though both DBE and ABE
have been driven LOW, causing the data bus, the address bus, and al other signals
normally controlled by ABE to become high impedance.

Note

Thereisno scan cell on TBE. Therefore, TBE is completely independent of scan data
and can be used to put the outputs into a high impedance state while scan testing takes
place.

Table 3-6 liststhe tristate control of the processor outputs.

Table 3-6 Tristate control of processor outputs

Processor output ABE DBE TBE

A[31:0] Yes - Yes
D[31:0] - Yes Yes
nRW Yes - Yes
LOCK Yes - Yes
MAS[1:0] Yes - Yes
nOPC Yes - Yes
NTRANS Yes - Yes

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 3-21

Memory Interface

ARM7TDMI core test chip example system

Connecting the ARM7TDMI processor data bus, D[31:0] to an external shared bus
requires additional logic that varies between applications in the case of atest chip.

In this application, care must be taken to prevent bus clash on D[31:0] when the data
bus drive changes direction. The timing of nENI N, and the pad control signals must be
arranged so that when the core startsto drive out, the pad drive onto D[31:0] isdisabled
before the core starts to drive. Similarly, when the bus switches back to input, the core
must stop driving before the pad is enabled.

Thecircuitimplemented inthe ARM7TDMI processor test chip isshownin Figure 3-17
on page 3-23.

3-22

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Memory Interface

ARM7TDMI test chip or product

ARM7TDMI core

,J_‘ MCLK

1>

nEN1

L
Vdd
scan DBE
cell —L
scan - nENOUT
cell TE—'
scan nENIN
cell —
Vdd Vss
—— TBE
y\ | —
L D[31:0]
]

Pad
[I%]]—Ej XD[31:0]
[— 1

[] mcLk

L
nEDBE
| EpBE
>C nEN2

Note

Figure 3-17 Test chip data bus circuit

At the core level, TBE and DBE are inactive, tied HIGH, because in a packaged part
you do not have to manually force theinternal busesinto ahigh impedance state. At the
pad level, thetest chip signal EDBE isused by the buscontrol logic to allow the external
memory controller to arbitrate the bus and asynchronously disable the ARM7TDMI
core test chip if necessary.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

3-23

Memory Interface

3.6.2

3.6.3

ABORT

ABORT indicates that a memory transaction failed to complete successfully. ABORT
issampled at the end of the bus cycle during S-cycles and N-cycles.

If ABORT isasserted on a data access, it causes the processor to take the Data Abort
trap. If it isasserted on an opcode fetch, the abort is tracked down the pipeline, and the
Prefetch Abort trap is taken if the instruction is executed.

ABORT can be used by a memory management system to implement, for example, a
basic memory protection scheme, or a demand-paged virtual memory system.

Byte latch enables

To ease the connection of the ARM7TDMI core to subword sized memory systems,
input data and instructions can be latched on a byte-by-byte basis. You can achieve this
by the use of the BL [3:0] signal asfollows:

. BL [3] controls the latching of the data present on D[31:24]
. BL[2] controls the latching of the data present on D[23:16]
. BL[1] controls the latching of the data present on D[15:8]
. BL [0O] controls the latching of the data present on D[7:0].

Note

Itis recommended that BL[3:0] istied HIGH in new designs and word values from
narrow memory systems are latched onto latches that are external to the ARM7TDMI
core.

In amemory system that contains 32-bit memory only, BL[3:0] can betied HIGH. For
subword-wide memory systems, the BL [3:0] signals are used to latch the dataasit is
read out of memory. For example, aword access to halfword-wide memory must take
place in two memory cycles, asfollows:

1. Inthefirst cycle, the datafor D[15:0] is obtained from the memory and latched
into the core on the falling edge of MCLK when BL[1:0] are both HIGH.

2. Inthesecond cycle, the data for D[31:16] islatched into the core on the falling
edge of MCLK when BL[3:2] are both HIGH.

In Figure 3-18 on page 3-25, aword access is performed from ha fword-wide memory
intwo cycles:

1. Inthefirst cycle, theread datais applied to the lower half of the bus.

2. Inthe second cycle, the read datais applied to the upper half of the bus.

3-24

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Memory Interface

Because two memory cycles are required, nWAI T is used to stretch the internal
processor clock. N\WAIT does not affect the operation of the data latches. Using this
method, data can be taken from memory aword, halfword, or byte at atime and the
memory can have as many wait states as required. In multi-cycle memory accesses,
NWAIT must be held LOW until the final part is latched.

In the example shown in Figure 3-18, the BL[3:0] signalsaredriven to value 0x3 in the
first cycle so that only the latches on D[15:0] are open. BL[3:0] can be driven to value
oxF and all of the latches opened. This does not affect the operation of the core because
the latches on D[31:16] are written with the correct data during the second cycle.

Note
BL[3:0] must be held HIGH during store cycles.

MCLK |

APE

nMREQ |
SEQ

| |
| |
| |
| |
- —
A[31:0] | Y) !
| |
| |
| |
| |
| |
| |
| |

nWAIT
D[15:0]

D[31:16]

BL[3:0] |

Figure 3-18 Memory access

Figure 3-19 on page 3-26 shows a halfword load from single-wait state byte-wide
memory. In the figure, each memory access takes two cycles:

. In the first access:
— BL[3:0] aredriven to 0xF
— thecorrect dataislatched from D[7:0]
— unknown datais|atched from D[31:8].

. In the second cycle, the bytefor D[15:8] islatched so the halfword on D[15:0] is
correctly read from memory. It does not matter that D[31:16] are unknown
because the core extracts only the halfword of interest.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 3-25

Memory Interface

MCLK J

APE

nMREQ |
SEQ

A[31:0] |
NWAIT

D[7:0]
D[15:8]
BL[3:0] |

e
D S S S S — S——
;X X; ! ! ! X; ;I
| A | A A W
i i i {1) : i :
! ! ! ! ! ' !
! ! ! ! ! — !
| 0 l0xF B 0wz 0]

Figure 3-19 Two-cycle memory access

3.6.4 Byte and halfword accesses

The processor indicatesthe size of atransfer by use of the M AS[1: 0] signal asdescribed
in MAS 1:0] on page 3-11.

Byte, halfword, and word accesses are described in:

. Reads
. Writes on page 3-27.

Reads

When a hafword or byte read is performed, a 32-bit memory system can return the
complete 32-bit word, and the processor extracts the valid halfword or byte field from
it. The fields extracted depend on the state of the BIGEND signal, which determines
the endian configuration of the system. See Memory formats on page 2-4.

A word read from 32-bit memory presentsthe word value on thewhol e databus aslisted
in Table 3-7 on page 3-27.

When connecting 8-bit to 16-bit memory systems to the processor, ensure that the data
is presented to the correct byte lanes on the core aslisted in Table 3-7 on page 3-27.

3-26

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Memory Interface

Table 3-7 Read accesses

Access type MAS[1:0] A[1:0] Little-endian BIGEND =0 Big-endian BIGEND =1

Word 10 XX D[31:0] D[31:0]

Halfword 01 0X D[15:0] D[31:16]
01 1X D[31:16] D[15:0]

Byte 00 00 D[7:0] D[31:24]
00 01 D[15:8] D[23:16]
00 10 D[23:16] D[15:8]
00 11 D[31:24] D[7:0]
Note

For subword reads the value is placed in the ARM register in the least significant bits
regardless of the byte lane used to read the data. For example, abyteread on A[1:0] =
01 in alittle-endian system means that the byte isread on bits D[15:8] but isplaced in
the ARM register bits[7:0].

Writes

When the ARM7TDMI processor performs a byte or halfword write, the data being
written is replicated across the data bus, as shown in Figure 3-20 on page 3-28. The
memory system can use the most convenient copy of the data.

A writable memory system must be capable of performing awrite to any single bytein
the memory system. This capability isrequired by the ARM C Compiler and the debug
tool chain.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 3-27

Memory Interface

Bits 31 24123 16(15 8|7 0
A B c D ARM
register
D
Byte write (register [7:0])
l l l Memory
D D D D interface
D[31:24] D[23:16] D[15:8] D[7:0]
CD
Half word write (register [15:0]) ‘
l Memory
cD cD interface
D[31:16] D[15:0]
ABCD
Word write (register [31:0]) ‘
Memory
ABCD interface
D[31:0]

Figure 3-20 Data replication

3-28

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Memory Interface

3.7 Stretching access times

The ARM7TDMI processor does not contain any dynamic logic that relies on regular
clocking to maintain the internal state. Therefore, there is no limit upon the maximum
period for which MCLK can be stretched, or nWAIT held LOW. There are two
methods available to stretch access times as described in:

. Modulating MCLK

. Use of nWAIT to control bus cycles.

Note

If you wish to use an Embedded Trace Macrocell (ETM) to obtain instruction and data
trace information on atrace port then you must usethe nWAIT signal to stretch access
times.

3.7.1 Modulating MCLK

All memory timing isdefined by M CLK, and long access times can be accommodated
by stretching this clock. It isusual to stretch the LOW period of MCLK, asthisallows
the memory manager to abort the operation if the access is eventually unsuccessful.

MCLK can be stretched before being applied to the processor, or thenWAI T input can
be used together with afree-running M CLK. Taking "nWAIT LOW has the same effect
as stretching the LOW period of MCLK.

3.7.2 Use of nWAIT to control bus cycles

The pipelined nature of the processor bus interface means that there is a distinction
between clock cycles and bus cycles. n\WAI T can be used to stretch abus cycle, so that
it lasts for many clock cycles. The nWAIT input allows the timing of bus cyclesto be
extended in increments of complete M CLK cycles:

. when nWAIT isHIGH on the rising edge of M CLK, a bus cycle completes

. when nWAIT is sampled LOW, the bus cycle is extended by stretching the low
phase of the internal clock.

NWAIT must only change during the LOW phase of MCLK.

In the pipeline, the address class signals and the memory request signals are ahead of
the datatransfer by one bus cycle. In asystem using N\WAIT this can be more than one
MCLK cycle. Thisisillustrated in Figure 3-21 on page 3-30, which showsnWAIT
being used to extend a nonsequential cycle. Inthe example, thefirst N-cycleisfollowed
afew cycleslater by another N-cycle to an unrelated address, and the address for the
second access is broadcast before the first access completes.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 3-29

Memory Interface

nWAIT

nMREQ

¥
(&}
(S I R i N -
N B A R R
N “ ““““““ L
o]
A DO
© —
=2
A DO
o

—~
<]
o

—

“““““ — n L
——
2

D[31:0]
nRAS
nCAS

Figure 3-21 Typical system timing

Note
When designing a memory controller, you are strongly advised to sample the val ues of

NMREQ, SEQ, and the address class signals only when nWAI T isHIGH. Thisensures

that the state of the memory controller is not accidentally updated during an extended

bus cycle.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

3-30

3.8

Memory Interface

Privileged mode access

If only privileged mode access is required from amemory system, you are advised to
usethenTRANSpin on the core. Thissignal distinguishes between User and privileged
accesses.

Thisisrecommended becauseif the Operating System (OS) accesses memory on behalf
of the current application, it must perform these accessesin User mode. Thisisachieved
using the LDRT and STRT instructions that set N"TRANS appropriately.

This measure avoids the possibility of a hacker deliberately passing an invalid pointer
to an OS and getting the OS to access this memory with privileged access. This
technique could otherwise be used by a hacker to enabl e the user application to access
any memory locations such as 1/0 space.

The least significant five bits of the CPSR are also output from the core as inverted
signals, nM[4:0]. These indicate the current processor mode as listed in Table 3-8.

Table 3-8 Use of nM[4:0] to indicate current processor mode

M[4:0] nM[4:0] Mode

10000 01111 User

10001 01110 FIQ

10010 01101 IRQ

10011 01100 Supervisor

10111 01000 Abort

11011 00100 Undefined

11111 00000 System

Note
The only time to use the nM[4:0] signalsisfor diagnostic and debug purposes.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 3-31

Memory Interface

3.9 Reset sequence after power up

It is good practice to reset a static device immediately on power-up, to remove any
undefined conditions within the device that can otherwise combine to cause a DC path
and conseguently increase current consumption. Most systems are reset by using a
simple RC circuit on the reset pin to remove the undefined states within devices while
clocking the device.

During reset, the signalsnM REQ and SEQ show internal cycleswhere the addressbus
continues to increment by two or four bytes. Theinitia address and increment values
are determined by the state of the corewhen nRESET was asserted. They areundefined
after power up.

After NRESET has been taken HIGH, the ARM core does two further internal cycles
before the first instruction is fetched from the reset vector (address 0x00000000). It then
takes three M CLK cycles to advance thisinstruction through the
Fetch-Decode-Execute stages of the ARM instruction pipeline before this first
instruction is executed. Thisis shown in Figure 3-22.

Note

NRESET must be held asserted for aminimum of two MCLK cyclesto fully reset the
core.

You must reset the Embedded| CE-RT logic and the TAP controller aswell, whether the
debug featuresare used or are not. Thisisdone by takingnTRST LOW for at least Ty,
no later than NRESET.

In Figure 3-22, X, y, and z are incrementing address values.

Fetch 1 Decode 1 Execute 1

MCLK - [[| | |
nRESET []

Al31:0] XTI x XTIy Xiz Xio Xi4 X8 X
D[31:0] (O—COHO—CO—CCO—C— <
AMREQ V V W A A A
SEQ A A [] V V
nEXEC \

Figure 3-22 Reset sequence

3-32

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Chapter 4

Coprocessor Interface

This chapter describes the ARM7TDMI core coprocessor interface. It contains the
following sections:

. About coprocessors on page 4-2

. Coprocessor interface signals on page 4-4

. Pipeline following signals on page 4-5

. Coprocessor interface handshaking on page 4-6

. Connecting coprocessors on page 4-12

. If you are not using an external coprocessor on page 4-15
. Undefined instructions on page 4-16

. Privileged instructions on page 4-17.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

4-1

Coprocessor Interface

4.1 About coprocessors

The ARM7TDMI coreinstruction set enables you to implement specialized additional
instructions using coprocessors to extend functionality. Coprocessors are separate
processing units that are tightly coupled to the ARM7TDMI processor. A typical
coprocessor contains:

. an instruction pipeline (pipeline follower)

. instruction decoding logic

. handshake logic

. aregister bank

. specia processing logic, with its own data path.

A coprocessor is connected to the same data bus as the ARM7TDMI processor in the
system, and tracks the pipeline in the ARM7TDMI processor. This means that the
coprocessor can decodetheinstructionsin theinstruction stream, and execute those that
it supports. Each instruction progresses down both the ARM7TDMI core pipeline and
the coprocessor pipeline at the same time.

The execution of instructions is shared between the ARM7TDMI core and the
COProcessor.

The ARM7TDMI processor:

1. Evaluatestheinstruction type and the condition codes to determine whether the
instructions are executed by the coprocessor, and communicates thisto any
coprocessorsin the system, using nCPI.

2. Generates any addresses that are required by the instruction, including
prefetching the next instruction to refill the pipeline.

3. Takesthe undefined instruction trap if no coprocessor accepts the instruction.
The coprocessor:

1. Decodes instructions to determine whether it can accept the instruction.

2. Indicates whether it can accept the instruction by using CPA and CPB.

3. Fetchesany valuesrequired from its own register bank.

4. Performs the operation required by the instruction.

If a coprocessor cannot execute an instruction, the instruction takes the undefined
instruction trap. You can choose whether to emulate coprocessor functionsin software,
or to design a dedicated coprocessor.

4-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Coprocessor Interface

4.1.1 Coprocessor availability

Up to 16 coprocessors can be referenced by a system, each with a unique coprocessor
ID number to identify it. The ARM7TDMI core contains one internal coprocessor:

. CP14, the Debug Communications Channel (DCC) coprocessor.

Other coprocessor numbers have also been reserved. Coprocessor availability islisted
in Table 4-1.

Table 4-1 Coprocessor availability

Coprocessor number Allocation

15 Reserved for system control
14 Debug controller

13:8 Reserved

7:4 Available to users

3.0 Reserved

If you intend to design a coprocessor send an email with coprocessor in the subject line
to info@arm.com for up-to-date information on which coprocessor numbers have been
allocated.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 4-3

Coprocessor Interface

4.2

Coprocessor interface signals

The signals used to interface the ARM7TDMI core to a coprocessor are grouped into
four categories.

The clock and clock control signalsare:

MCLK
nWAIT
NRESET.

The pipeline following signals are:

nNMREQ
SEQ
NTRANS
nOPC
TBIT.

The handshake signals are:

nCPI
CPA
CPB.

The datasignals are:

D[31:0]
DIN[31:0]
DOUT[31:0].

4-4

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Coprocessor Interface

4.3 Pipeline following signals

Every coprocessor in the system must contain a pipeline follower to track the
instructions in the ARM7TDMI| processor pipeline. The coprocessors connect to the
configured ARM7TDMI core input data bus, D[31:0] or DIN[31:0], over which
instructions are fetched, and to MCLK and nWAIT.

Itisessential that the two pipelinesremain in step at all times. When designing a
pipeline follower for a coprocessor, you must observe the following rules:

. At reset, with nRESET LOW, the pipeline must either be marked asinvalid, or
filled with instructions that do not decode to valid instructions for that
COProcessor.

. The coprocessor state must only change when nWAIT is HIGH, except during
reset.

. Aninstruction must be loaded into the pipeline on thefalling edge of M CLK, and
only when nOPC, nMREQ, and TBIT were all LOW in the previous bus cycle.
These conditions indicate that this cycleisan ARM instruction fetch, so the new
opcode must be read into the pipeline.

. The pipeline must be advanced on the falling edge of MCL K when nOPC,
NMREQ and TBIT areall LOW in the current bus cycle.

These conditions indicate that the current instruction is about to complete
execution, because the first action of any instruction performing an instruction
fetch isto refill the pipeline.

Any instructions that are flushed from the ARM7TDMI processor pipeline:
. never signal on nCPI that they have entered execute

. are automatically replaced in the coprocessor pipelinefollower by the prefetches
required to refill the core pipeline.

There are no coprocessor instructions in the Thumb instruction set, so coprocessors
must monitor the state of the TBIT signal to ensure that they do not decode pairs of
Thumb instructions as ARM instructions.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 4-5

Coprocessor Interface

4.4 Coprocessor interface handshaking

Coprocessor interface handshaking is described as follows:
. The coprocessor

. The ARM7TDMI processor on page 4-7

. Coprocessor signaling on page 4-7

. Consequences of busy-waiting on page 4-8

. Coprocessor register transfer instructions on page 4-9
. Coprocessor data operations on page 4-10

. Coprocessor load and store operations on page 4-10.

The ARM7TDMI core and any coprocessors in the system perform a handshake using
the signals shown in Table 4-2.

Table 4-2 Handshaking signals

Signal Direction Meaning

nCPI ARMT7TDMI coreto coprocessor ~ NOT coprocessor instruction

CPA Coprocessor to ARM7TDMI core Coprocessor absent

CPB Coprocessor to ARM7TDMI core Coprocessor busy

These signals are explained in more detail in Coprocessor signaling on page 4-7.

44.1 The coprocessor

The coprocessor decodes the instruction currently in the Decode stage of its pipeline,
and checks whether that instruction is a coprocessor instruction. A coprocessor
instruction contains a coprocessor number that matches the coprocessor 1D of the
COproCcessor.

If the instruction currently in the Decode stageis a relevant coprocessor instruction:
1. Thecoprocessor attempts to execute the instruction.

2. Thecoprocessor handshakes with the ARM7TDMI core using CPA and CPB.

Note

The coprocessor can drive CPA and CPB as soon asit decodes the instruction. It does
not have to wait for nCPI to be LOW but it must not commit to execute the instruction
until nCPI has gone LOW.

4-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Coprocessor Interface

442 The ARM7TDMI processor

Coprocessor instructions progress down the ARM7TDMI core pipdinein step with the
coprocessor pipeline. A coprocessor instruction is executed if the following are true:

1. The coprocessor instruction has reached the Execute stage of the pipeline. It
might not if it is preceded by a branch.

2. The ARM7TDMI processor cannot execute the instruction because the
instruction is in the coprocessor or undefined part of the instruction set.

3. Theinstruction has passed its conditional execution tests.
If al these requirements are met, the ARM7TDMI core signals by taking nCPI LOW,
this commits the coprocessor to the execution of the coprocessor instruction.

44.3 Coprocessor signaling

The coprocessor responses are listed in Table 4-3.

Table 4-3 Summary of coprocessor signaling

CPA CPB Response Remarks

0 0 Coprocessor present If a coprocessor can accept an instruction, and can start that instruction
immediately, it must signal this by driving both CPA and CPB LOW. The
ARM7TDMI processor then ignores the coprocessor instruction and
executes the next instruction as normal .

0 1 Coprocessor busy If acoprocessor can accept an instruction, but is currently unable to process
that request, it can stall the ARM7TDMI processor by asserting busy-wait.
Thisis signaled by driving CPA LOW, but leaving CPB HIGH. When the
coprocessor is ready to start executing the instruction it signals this by
driving CPB LOW. Thisis shown in Figure 4-1 on page 4-8.

1 0 Invalid response -

1 1 Coprocessor absent If acoprocessor cannot accept the instruction currently in Decode, it must
leave CPA and CPB both HIGH. The ARM7TDMI processor takes the
undefined instruction trap.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 4-7

Coprocessor Interface

LSS N I I I I i
Fetch stage ::X aop Y sus [cop f TsT Y SUB X X X
Decode stage ::X X aoo (X sus [X coe [TST \ sus Y X
EX:tCaug::: X X _noo X sus) DP X 7sT Y sus i
nCPI \ /
CPA \ /
CPB \—e——/
TR o e S e e L e e
éoprocessor
t?usy waitiqg

Figure 4-1 Coprocessor busy-wait sequence

CPA and CPB areignored by the ARM7TDMI processor when it does not have a
undefined or coprocessor instruction in the Execute stage of the pipeline.

A summary of coprocessor signaling is listed in Table 4-3 on page 4-7.

4.4.4 Consequences of busy-waiting

A busy-waited coprocessor instruction can be interrupted. If avalid FI1Q or IRQ occurs
and the appropriate bit is clear in the CSPR, then the ARM7TDMI processor abandons
the coprocessor instruction, and signals this by taking nCPI HIGH. A coprocessor that
is capable of busy-waiting must monitor nCPI to detect this condition. When the
ARM7TDMI core abandons a coprocessor instruction, the coprocessor also abandons
the instruction, and continues tracking the ARM7TDMI processor pipeline.

4-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Coprocessor Interface

—— Caution

It is essential that any action taken by the coprocessor whileit is busy-waiting is
idempotent. This means that the actions taken by the coprocessor must not corrupt the
state of the coprocessor, and must be repeatable with identical results. The coprocessor
can only change its own state once the instruction has been executed.

The ARM7TDMI processor usually returns from processing the interrupt to retry the
coprocessor instruction. Other coprocessor instructions can be executed before the
interrupted instruction is executed again.

445 Coprocessor register transfer instructions

The coprocessor register transfer instructions, MCR and MRC, are used to transfer data
between aregister in the ARM7TDMI processor register bank and aregister in the
coprocessor register bank. An example sequence for a coprocessor register transfer is
shown in Figure 4-2.

ST Iy) N Ny Ny B o I
Fetoh stage T\ Aoo [\ sus Y wor Y15t) e i)(Y .
Decode stage T A0 Y soe Y mer N ter Y sm
Execute stage) X N N G) G0 &

nCP! [

.

o

D[31:0] ___J(_Ado) ste Y wer Y 1ot)Y st){oAta){ mstr)

Figure 4-2 Coprocessor register transfer sequence

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 4-9

Coprocessor Interface

446 Coprocessor data operations

Coprocessor data operations, CDP instructions, perform processing operations on the
data held in the coprocessor register bank. No information is transferred between the
ARM7TDMI processor and the coprocessor as aresult of this operation. An example
sequence is shown in Figure 4-3.

work | | | | | | | B
Fetch stage X A X s ¥ wmcr| X tsT{ X sus | X X X
Decode stage X X Ao X susi X wmcri Y 7sT | X sus | X)
Execute stage X X Y ao[X sus[Y wmcr| Y st X sus |)
(from :Igl\ljl); \—J
coprocesson) .
coptocecenn) L
I S R O T R

Figure 4-3 Coprocessor data operation sequence

447 Coprocessor load and store operations

The coprocessor load and store instructions are used to transfer data between a
coprocessor and memory. They can be used to transfer either a single word of data, or
anumber of the coprocessor registers. Thereis no limit to the number of words of data
that can be transferred by asingle LDC or STC instruction, but by convention no more
than 16 words should be transferred in a single instruction. An example sequenceis
shown in Figure 4-4 on page 4-11.

Note

If you transfer more than 16 words of datain a single instruction, the worst case
interrupt latency of the ARM7TDMI processor increases.

4-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Coprocessor Interface

MCLK | |]

Fetchstage | AoD { sus [ftocn=4)\ ST Y suB X X L
Desctgg: ::X { Ao Y sus [Y oc Y ST \ sus Y X:
EXE;”;Z ::X X X Ao [\ sus [LDC \ 7st T\ sus X:

nCPI \ /
CPA \ [°
cPB \ [°
D[31:0] '"(SXSESC n X 'n(SgJEBtf h X ln?ﬂ;gt)c h X '”?'Tr;.ertfh X '”(SgJ;t)ChX CP Data X CP Data X CP Data X CP Data X Instr fetch X

Figure 4-4 Coprocessor load sequence

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 4-11

Coprocessor Interface

4.5 Connecting coprocessors

A coprocessor in an ARM7TDMI processor system must have 32-bit connections to:
. the instruction stream from memory

. data written by the core, MCR

. data read by the core, MRC.

The coprocessor can optionally have connections to:
. data written from memory, LDC
. data read to memory, STC.

This section describes:

. Connecting a single coprocessor

. Connecting multiple coprocessors on page 4-13.
45.1 Connecting asingle coprocessor

An example of how to connect:

. a coprocessor into an ARM7TDMI processor system if you are using a
bidirectional busis shown in Figure 4-5

. a coprocessor into an ARM7TDMI processor system if you are using a
unidirectional busis shown in Figure 4-6 on page 4-13.

D[31:01 | Memory
system

V i; CPDRIVE

Coprocessor

ARM core

Figure 4-5 Coprocessor connections with bidirectional bus

4-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Coprocessor Interface

ARM core Memory
system
» 0
CSEL N
\ 4
> 0 > 1
A
> 1 CPDIN |CPDOUT |CPDRIVE
Coprocessor

Figure 4-6 Coprocessor connections with unidirectional bus
Thelogic for Figure 4-6 is asfollows:
on FALLING MCLK
ASEL = ((nMREQ = 1 and SEQ = 1) and (not nRW))
CSEL = ((nMREQ = 1 and SEQ = 1) and (nRW))
4.5.2 Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as

follows:
nCPI Connect this signal to all coprocessors present in the system.
CPA and CPB

Theindividual CPA and CPB outputs from each coprocessor must be
ANDed together, and connected to the CPA and CPB inputs on the
ARM7TDMI processor.

You must multiplex the output data from the coprocessors.

Connecting multiple coprocessorsis shown in Figure 4-7 on page 4-14.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 4-13

Coprocessor Interface

CPA / P ————— = CPAn
nCPI
ARM core -t =P
CcPB ———— - ——— = — — - — —CPBn
CPB2

CPB1 vy [CPA1 y |[cPA2 _________ :
| |
Coprocessor Coprocessor I Coprocessor |
1 2 ! n !
| |

Figure 4-7 Connecting multiple coprocessors

4-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Coprocessor Interface

4.6 If you are not using an external coprocessor

If you are implementing a system that does not include any external coprocessors, you
must tie both CPA and CPB HIGH. Thisindicates that no external coprocessors are
present in the system. If any coprocessor instructions are received, they take the
undefined instruction trap so that they can be emulated in software if required. The
internal coprocessor, CP14, can still be used.

The coprocessor outputs from the ARM7TDMI processor are usually left unconnected
but these outputs can be used in other parts of a system as follows..

. nCPI
. nOPC
. TBIT.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 4-15

Coprocessor Interface

4.7 Undefined instructions

Undefined instructions are treated by the ARM7TDMI processor as coprocessor
instructions. All coprocessors must be absent, CPA and CPB must be HIGH, when an
undefined instruction is presented. The ARM7TDMI processor takes the undefined
instruction trap.

For undefined instructions to be handled correctly, any coprocessors in a system must
givethe absent response (CPA and CPB HIGH) to an undefined instruction. Thisallows
the core to take the undefined instruction exception.

The coprocessor must check bit 27 of the instruction to differentiate between the
following instruction types:

. undefined instructions have 0 in bit 27
. coprocessor instructions have 1 in bit 27.

Coprocessor instructions are not supported in the Thumb instruction set but undefined
instructions are. All coprocessors must monitor the state of the TBIT output from
ARM7TDMI core. When the ARM7TDMI coreisin Thumb state, coprocessors must
drive CPA and CPB HIGH, and the instructions seen on the data bus must be ignored.
In thisway, coprocessors do not execute Thumb instructionsin error, and all undefined
instructions are handled correctly.

4-16

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Coprocessor Interface

4.8 Privileged instructions

The output signal NnTRANS allowsthe implementation of coprocessors, or coprocessor
instructions, that can only be accessed from privileged modes. The signal meanings are
given in Table 4-4.

Table 4-4 Mode identifier signal meanings (nTRANS)

NTRANS Meaning

0 User mode instruction

1 Privileged mode instruction

If used, the NTRANS signal must be sampled at the same time as the coprocessor
instruction is fetched and is used in the coprocessor pipeline Decode stage.

Note

If a User mode process, with N TRANS LOW, tries to access a coprocessor instruction
that can only be executed in a privileged mode, the coprocessor respondswith CPA and
CPB HIGH. This causes the ARM7TDMI processor to take the undefined instruction

trap.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 4-17

Coprocessor Interface

4-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Chapter 5
Debug Interface

This chapter describes the ARM7TDMI processor debug interface. It contains the
following sections:

. About the debug interface on page 5-2

. Debug systems on page 5-4

. Debug interface signals on page 5-7

. ARM7TDMI core clock domains on page 5-11

. Determining the core and system state on page 5-13.

Thischapter also describesthe ARM7TDMI processor Embedded! CE-RT logic module
in the following sections:

. About EmbeddedI CE-RT logic on page 5-14
. Disabling Embedded| CE-RT on page 5-16
. Debug Communications Channel on page 5-17.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 5-1

Debug Interface

5.1 About the debug interface

The ARM7TDMI processor debug interface is based on |[EEE Std. 1149.1 - 1990,
Sandard Test Access Port and Boundary-Scan Architecture. Refer to this standard for
an explanation of the terms used in this chapter and for adescription of the Test Access
Port (TAP) controller states. A flow diagram of the TAP controller state transitionsis
provided in Figure B-2 on page B-6.

The ARM7TDMI processor contains hardware extensions for advanced debugging
features. These make it easier to develop application software, operating systems and
the hardware itself.

The debug extensions enable you to force the core into one of the following modes:

Halt mode On abreakpoint or watchpoint, the core enters debug state. In
debug state, the core is stopped and isolated from the rest of the
system. When debug has completed, the debug host restores the
core and system state, and program execution resumes.

Monitor mode On abreakpoint or watchpoint, an Instruction Abort or Data Abort
isgenerated instead of entering debug state. The core still receives
and servicesinterrupts as normal.

In either case, you can examinetheinternal state of the core and the externa state of the
system while system activity continues.

5.1.1 Stages of debug

A reguest on one of the externa debug interface signals, or on the Embedded! CE-RT
logic, forcesthe ARM7TDMI processor into debug state. The eventsthat activate debug
are:

. abreakpoint (an instruction fetch)

. awatchpoint (a data access)

. an external debug request.

Theinternal state of the ARM7TDMI processor is then examined using a JTAG-style
serial interface. In halt mode, this enables instructions to be inserted serially into the
core pipeline without using the external databus. So, for example, when in debug state,
a Store Multiple (STM) can be inserted into the instruction pipeline and this exports the
contents of the ARM7TDMI core registers. This data can be serially shifted out without
affecting the rest of the system.

In monitor mode, the JTAG interfaceis used to transfer data between the debugger and
asimple monitor program running on the ARM7TDMI core.

5-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug Interface

5.1.2 Clocks

The ARM7TDMI core has two clocks:
. MCLK isthe memory clock
. DCLK isaninterna debug clock, generated by the test clock, TCK.

During normal operation, thecoreisclocked by MCLK and internal logic holdsDCL K
LOW.

When the ARM7TDMI processor isin halt mode, the coreis clocked by DCLK under
control of the TAP state machineand M CL K can free-run. The selected clock is output
onthesigna ECLK for use by the external system.

Note ——
NWAIT must be HIGH in debug state.

In monitor mode, the core continues to be clocked by MCLK, and DCLK is not used.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 5-3

Debug Interface

5.2 Debug systems

Figure 5-1 shows a typical debug system using an ARM core.

H_ost computer running
Debug host ARM or third party
toolkit

Protocol

For example Multi-ICE
converter

Development system

Debug target — containing an
ARM7TDMI processor

Figure 5-1 Typical debug system

A debug system typically has three parts:
. Debug host

. Protocol converter

. Debug target on page 5-5.

The debug host and the protocol converter are system-dependent.

5.2.1 Debug host

The debug host is acomputer that isrunning a software debugger such as the ARM
Debugger for Windows (ADW). The debug host allows you to issue high-level
commands such as setting breakpoints or examining the contents of memory.

52.2 Protocol converter

The protocol converter communicates with the high-level commands issued by the
debug host and the low-level commands of the ARM7TDM I processor JTAG interface.
Typicaly itinterfacesto the host through an interface such as an enhanced parallel port.

5-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug Interface

The ARM7TDMI processor has hardware extensions that ease debugging at the lowest
level. The debug extensions:

5.2.3 Debug target

allow you to halt program execution

examine and modify the core interna state of the core

view and modify the state of the memory system

execute abort exceptions, allowing real-time monitoring of the core
resume program execution.

The major blocks of the debug target are shown in Figure 5-2.

ARM7TDMI processor

Scan chain 0

EmbeddedICE-RT

logic ARM CPU
| main processor
m Scan chain 2 le— logic

BREAKPT

“»[scan cha/ili,—']—i

1 TAP controller |«

Figure 5-2 ARM7TDMI block diagram

The ARM CPU main processor logic

This has hardware support for debug.

The EmbeddedI CE-RT logic

Thisisaset of registers and comparators used to generate debug
exceptions such as breakpoints. This unit is described in About
Embedded| CE-RT logic on page 5-14.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 5-5

Debug Interface

The TAP controller
This controls the action of the scan chains using a JTAG seria interface.

5-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug Interface

5.3 Debug interface signals

There are three primary external signals associated with the debug interface:

. BREAKPT and DBGRQ are system requests for the processor to enter debug
state

. DBGACK isused to indicate that the core isin debug state.

Note

DBGEN must be configured HIGH to fully enable the debug features of the
processor. Refer to Disabling Embeddedl CE-RT on page 5-16.

The following sections describe:
. Entry into debug state
. Action of the ARM7TDMI processor in debug state on page 5-10.

5.3.1 Entry into debug state

The ARM7TDMI processor is forced into debug state following a breakpoint,
watchpoint, or debug request.

In monitor mode, the processor continues to execute instructionsin real time, and will
take an abort exception. The abort status register enables you to establish whether the
exception was due to a breakpoint or watchpoint, or to a genuine memory abort.

You can use the EmbeddedI CE-RT logic to program the conditions under which a
breakpoint or watchpoint can occur. Alternatively, you can use the BREAKPT signa
to allow external logic to flag breakpoints or watchpoints and monitor the following:
. address bus

. data bus

. control signals.

Thetiming isthesamefor externally-generated breakpoints and watchpoints. Datamust
aways be valid on the falling edge of MCLK. When thisis an instruction to be
breakpointed, the BREAK PT signal must be HIGH on the next rising edge of MCLK.
Similarly, when the dataisfor aload or store, asserting BREAK PT on therising edge
of MCLK marks the data as watchpointed.

When the processor enters debug state, the DBGACK signal isasserted. Thetiming for
an externally-generated breakpoint is shown in Figure 5-3 on page 5-8.

The following sections describe:
. Entry into debug state on breakpoint on page 5-8

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 5-7

Debug Interface

. Entry into debug state on watchpoint on page 5-9
. Entry into debug state on debug request on page 5-9.

? i C C
DD
astol X X X X <<
! ! ! P /
BREAKPT [\ o A
PR
DBGACK c ¥
PP
C C
nMREQ PEED)
SEQ Memory‘cycles S S X Internal cycles

Figure 5-3 Debug state entry

Entry into debug state on breakpoint

The ARM7TDMI core marks instructions as being breakpointed as they enter the
instruction pipeline, but the core does not enter debug state until the instruction reaches
the Execute stage.

Breakpointed instructions are not executed. Instead, the processor enters debug state.
Depending on whether you have set bit 4 in the debug control register, the core
instruction processing stops, or an abort exception is executed (Abort on page 2-19).
When you examine the internal state, you see the state before the breakpointed
instruction.

When your examination is complete, the breakpoint must be removed. Thisis usualy
handled automatically by the debugger which also restarts program execution from the
previously-breakpointed instruction.

Note

When a breakpointed conditional instruction reaches the Execute stage of the pipeline,
the breakpoint is aways taken, regardless of whether the condition is met.

5-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug Interface

A breakpointed instruction does not cause the ARM7TDMI core to enter debug state
when:

. A branch or awrite to the PC precedes the breakpointed instruction. In this case,
when the branch is executed, the core flushes the instruction pipeline and so
cancels the breakpoint.

. An exception occurs before the breakpointed instruction reaches the Execute
stage of the pipeline. This causes the processor to flush the instruction pipeline
and so cancel the breakpoint. In normal circumstances, on exiting from an
exception, the ARM7TDMI core branches back to the next instruction to be
executed before the exception occurred. In this case, the pipelineis refilled and
the breakpoint is reflagged.

Entry into debug state on watchpoint

Watchpoints occur on data accesses. Depending on whether you have set bit 4 in the
debug control register, the core instruction processing stops, or an abort exception is
executed (Abort on page 2-19). A watchpoint is always taken, but the core might not
enter debug state immediately. In all cases, the current instruction completes. If the
current instruction is load or store multiple instruction (LDM or STM), many cycles can
elapse before the watchpoint is taken.

On awatchpoint, the following sequence occurs:

1. Thecurrent instruction completes.

2. All changesto the core state are made.

3. Load datais written into the destination registers.
4. Basewrite-back is performed.

If awatchpoint occurs when an exception is pending (even when Monitor mode enable
is reset), the core enters debug state in the same mode as the exception.
Entry into debug state on debug request

The ARM7TDMI processor can be forced into debug state on debug request in either of
the following ways:

. through Embedded| CE-RT logic programming (see Programming breakpointson
page B-48 and Programming watchpoints on page B-51)

. by asserting the DBGRQ pin.

The DBGRQ pinisan asynchronousinput and istherefore synchronized by logicinside
the ARM7TDMI processor beforeit takes effect. Following synchronization, the core
normally enters debug state at the end of the current instruction. However, if the current

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 5-9

Debug Interface

instruction is a busy-waiting access to a coprocessor, the instruction terminates and
ARMT7TDMI processor enters debug state immediately. Thisis similar to the action of
nIRQ and nFI Q.

5.3.2 Action of the ARM7TDMI processor in debug state

In debug state, NM REQ and SEQ indicate internal cycles. This enablestherest of the
memory system to ignore the core and function as normal. Because the rest of the
system continues to operate, the ARM7TDMI processor is forced to ignore aborts and
interrupts.

The system must not change the following signals during debug:

BIGEND If BIGEND changes during debug:
. synchronization problems are introduced

. theprogrammer’ sview of the processor changeswithout the
knowledge of the debugger.

NRESET Resetting the core while debugging causes the debugger to lose
track of the core.

When the system applies reset to the ARM7TDMI processor by
driving nRESET LOW, the processor state changes with the
debugger unaware that the core has reset.

When instructions are executed in halt mode, all memory interface outputs except
NMREQ and SEQ change asynchronously to the memory system. For example, every
time a new instruction is scanned into the pipeline, the address bus changes.

Thememory controller must be designed to ensure that asynchronous behavior does not
affect the rest of the system. Although the behavior of NMREQ and SEQ is
asynchronous, this does not affect the system because nM REQ and SEQ are forced to
indicate internal cycles regardless of the behavior of the rest of the core.

5.3.3 Action of the ARM7TDMI core in monitor mode

In monitor mode, the ARM7TDMI processor continues to execute instructions, and the
memory interface behaves as normal.

5-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug Interface

54 ARMT7TDMI core clock domains

The ARM7TDMI clocks are described in Clocks on page 5-3.

This section describes:
. Clock switch during debug
. Clock switch during test on page 5-12.

5.4.1 Clock switch during debug

When the ARM7TDMI processor enters halt debug state, it switches automatically
from MCLK to DCLK, it then asserts DBGACK in the HIGH phase of MCLK. The
switch between the two clocks occurs on the next falling edge of MCL K. Thisisshown
in Figure 5-4.

The coreisforced to use DCLK asthe primary clock until debugging is complete. On
exit from debug, the core must be allowed to synchronize back to M CLK . This must be
done by the debugger in the following sequence:

1. Thefinal instruction of the debug sequenceis shifted into the data bus scan chain
and clocked in by asserting DCLK.

2. RESTART isclocked into the TAP instruction register.

The core now automatically resynchronizes back to M CLK and starts fetching
instructions from memory at MCLK speed.

See Exit from debug state on page B-28.

MCLK ‘

DBGACK _w/
DCLK L
ek)\ g .

\ Multiplexer

switching point

Figure 5-4 Clock switching on entry to debug state

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 5-11

Debug Interface

Note
In monitor mode, the core continues to be clocked by MCLK, and DCLK is not used.

5.4.2 Clock switch during test

When serial test patterns are being applied to the ARM7TDMI core through the JTAG
interface, the processor must be clocked using DCLK. MCLK must be held LOW.

Entry into test is |ess automatic than debug and you must take care to prevent spurious
clocking on the way into test.

During test, you can use the TAP controller to serially test the processor. If scan chain
0 and INTEST are selected, DCLK is generated while the state machineisin the
RUN-TEST/IDLE state. During EXTEST, DCLK is not generated.

On exit from test, RESTART must be selected as the TAP controller instruction. When

thisisdone, MCLK can beresumed. After INTEST testing, you must take care to

ensure that the coreisin asensible state before reverting to normal operation. The saf est

ways to do this are asfollows:

. select RESTART, then cause a system reset

. insert MOV PC, #0 into the instruction pipeline before reverting to normal
operation.

5-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug Interface

5.5 Determining the core and system state

When the core is in debug state, you can examine the core and system state by forcing
the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determineif the
processor entered debug from Thumb state or ARM state, by examining bit 4 of the
Embedded| CE-RT logic debug statusregister. When bit 4 isHIGH, the core has entered
debug from Thumb state.

For more details about determining the core state, see Determining the core and system
state in debug state on page B-25.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 5-13

Debug Interface

5.6 About EmbeddedICE-RT logic

The EmbeddedI CE-RT logic provides integrated on-chip debug support for the
ARM7TDMI core.

The EmbeddedI CE-RT logic is programmed serially using the ARM7TDMI processor
TAP controller. Figure 5-5 illustrates the relationship between the core, the
EmbeddedI CE-RT logic, and the TAP controller, showing only the pertinent signals.

DBGRQI >
<«——DBGRQI
A[31:0] P
D[31:0] P
nOPC > «——EXTERN1 ——
NRW——p «——EXTERNO——
. TBIT—p - RANGEOUTO—p
ARM CPU ma_ln MAS[1:0]—> EmbeddeqlCE-RT RANGEOUT1—p
processor logic Logic
NTRANS —— - DBGACK—p
- DBGACKI—p € BREAKPT——
«— BREAKPTI—— <+——DBGRQ
«——IFEN <«——DBGEN
ECLK—p
nNMREQ—
& A
SDOUT SDIN CONTROL
v | |
<«——TCK
nTRST—p TAP ™e
«——TDI——
TDO——»

Figure 5-5 ARM7 CPU main processor logic, TAP controller, and EmbeddedICE-RT logic

The Embeddedl CE-RT logic comprises:
. two real-time watchpoint units

5-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug Interface

. three independent registers:
— debug control register
— debug status register
— abort status register.
. Debug Communications Channel (DCC).

The debug control register and the debug status register provide overall control of
Embedded| CE-RT operation. The abort status register is used when monitor mode is
selected.

You can program one or both watchpoint units to halt the execution of a program by the
core. Execution halts when the values programmed into EmbeddedI CE-RT match the
values currently appearing on the address bus, data bus, and various control signals.

Note
You can mask any bit so that its value does not affect the comparison.

You can configure each watchpoint unit for either awatchpoint or a breakpoint.
Watchpoints and breakpoints can be data-dependent in halt mode only.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 5-15

Debug Interface

5.7 Disabling EmbeddedICE-RT
The Embedded| CE-RT logic is disabled by setting DBGEN LOW.

—— Caution

Hard-wiring the DBGEN input LOW permanently disables the Embedded CE-RT
logic. However, you must not rely upon this for system security.

When DBGEN is LOW:

. BREAKPT and DBGRQ are ignored by the core

. DBGACK isforced LOW by the ARM7TDMI core

. interrupts pass through to the processor uninhibited by the debug logic
. the Embedded| CE-RT logic enters low-power mode.

5-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug Interface

5.8 Debug Communications Channel

The ARM7TDMI processor EmbeddedlI CE-RT logic contains a Debug
Communications Channel (DCC) to pass information between the target and the host
debugger. Thisisimplemented as coprocessor 14 (CP14).

The DCC comprises:
. a 32-bit communications data read register
. a 32-bit communications data write register

. a32-bit communications control register for synchronized handshaking between
the processor and the asynchronous debugger.

These registers are located in fixed locations in the Embedded| CE-RT logic register
map, as shown in Figure B-7 on page B-44, and are accessed from the processor using
MCR and MRC instructions to coprocessor 14.

The registers are accessed as follows:
By thedebugger Through scan chain 2 in the usual way.
By theprocessor Through coprocessor register transfer instructions.

The following sections describe:
. DCC control register
. Communications through the DCC on page 5-19.

5.8.1 DCC control register

The DCC control register controls synchronized handshaking between the processor
and the debugger. The control register format is shown in Figure 5-6 on page 5-18.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 5-17

Debug Interface

EmbeddedICE Control

version Reserved bits

’\\‘\!JT

31 30 29 28 27 2 10

(o] r]o]o

w]R]

DCC data read register

———— DCC data write register

Figure 5-6 DCC control register format

The function of each register bit is as follows:

Bits 31:28

Bits 27:2

Bit 1

Bit 0

Contain afixed pattern that denotesthe Embedded| CE-RT version
number, in this case b0100.

Reserved.
If this bit is clear, the DCC data write register is ready to accept

data from the processor.

If thisbit is set, thereisdatain the DCC datawriteregister and the
debugger can scan it out.

If this bit is clear, the DCC data read register is ready to accept
data from the debugger.

If this bit is set, the DCC data read register has data that has not
been read by the processor and the debugger must wait.

Note

If execution ishalted, bit 0 might remain asserted. The debugger can clear it by writing
to the DCC control register.

Writing to thisregister is rarely necessary, because in normal operation the processor
clearsbit O after reading it.

5-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug Interface

Usetheinstructions listed in Table 5-1 to access the DCC registers.

Table 5-1 DCC register access instructions

Instructions

Explanation

MRC CP14, @, Rd, Co, Co, @ Placesthe valuefromthe DCC control register into the destination register (Rd)

MCR CP14, @, Rn, C1, CO, @ Writesthe valuein the source register (Rn) to the DCC data write register

MRC CP14, 0, Rd, C1, C9, @ Returnsthe valuein the DCC dataread register into Rd

Because the Thumb instruction set does not contain coprocessor instructions, you are
advised to access this data through SWI instructions when in Thumb state.

5.8.2 Communications through the DCC

You can send and receive messages through the DCC. The following sections describe:
. Sending a message to the debugger

. Receiving a message from the debugger on page 5-20

. Interrupt-driven use of the DCC on page 5-20.

Sending a message to the debugger

When the processor has to send amessage to the debugger, it must check that the
communications datawrite register isfree for use by finding out if the W bit of the
debug communications control register is clear.

The processor reads the debug communications control register to check the status of
bit 1 (the W bit):

. If the W bit is clear then the communi cations data write register is clear.

. If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

Asthe data transfer occurs from the processor to the DCC datawrite register, the W bit
is set in the DCC control register. When the debugger pollsthis register it seesa
synchronized version of both the R and W bit. When the debugger sees that the W bit
isset, it can read the DCC datawriteregister and scan the dataout. The action of reading
this data register clears the W hit of the DCC control register. At this point, the
communications process can begin again.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 5-19

Debug Interface

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger polls the R bit of the DCC control
register:

. if the R bitisclear, the DCC dataread register isfree and data can be placed there
for the processor to read

. if the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the DCC dataread register is free, dataiswritten there using the JTAG interface.
The action of this write sets the R bit in the DCC control register.

The processor pollsthe DCC control register. If the R bit is set, thereis data that can be
read using an MRC instruction to coprocessor 14. When the debugger polls this register
and seesthat the R bit is clear, the data has been taken and the process can now be
repeated.

Interrupt-driven use of the DCC

An alternative, and potentially more efficient, method to polling the debug
communicationscontrol register isto usethe COMMT X and COM M RX outputsfrom
the ARM7TDMI processor. You can use these outputs to interrupt the processor when:
. aword is available to be read from the DCC data read register

. the DCC data write register is empty and available for use.

These outputs are usually connected to the system interrupt controller, that drives the
nIRQ and nFIQ ARM7TDMI processor inputs.

5-20

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug Interface

5.9 Monitor mode

The ARM7TDMI processor contains logic that allows the debugging of a system
without stopping the core entirely. This alows the continued servicing of critical
interrupt routines while the core is being interrogated by the debugger. Setting bit 4 of
the debug control register enables the monitor mode features of the ARM7TDMI
processor. When this bit is set, the EmbeddedI CE-RT logic is configured so that a
breakpoint or watchpoint causesthe ARM7TDMI core to enter abort mode, taking the
Prefetch or Data Abort vectors respectively. Thereareanumber of restrictionsyou must
be aware of when the ARM core is configured for monitor-mode debugging:

. Breakpoints and watchpoints cannot be data-dependent in monitor mode. No
support is provided for use of the range functionality. Breakpoints and
watchpoints can only be based on:

— instruction or data addresses

— external watchpoint conditioner (EXTERNO or EXTERN1)
— User or privileged mode access (nTRANS)

— read/write access for watchpoints (nRW)

— access size (watchpoints MAS[1:0]).

. External breakpoints or watchpoints are not supported.
. No support is provided to mix halt mode and monitor mode functionality.

The fact that an abort has been generated by the monitor mode is recorded in the abort
status register in coprocessor 14 (see The abort status register on page B-57).

The monitor mode enable bit does not put the ARM7TDMI processor into debug state.
For this reason, it is necessary to change the contents of the watchpoint registers while
external memory accesses are taking place, rather than changing them when in debug
state where the coreis halted.

If there is a possibility of false matches occurring during changes to the watchpoint

registers (caused by old datain some registers and new data in others) you must:

1. Disable the watchpoint unit by setting EmbeddedI CE-RT disable, bit 5 in the
debug control register.

2. Poll the debug control register until the Embeddedl CE-RT disablebit isread back
as set.

3. Changethe other registers.

4. Re-enablethewatchpoint unit by clearing the Embeddedl CE-RT disablebit inthe
debug control register.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 5-21

Debug Interface

5-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Chapter 6

Instruction Cycle Timings

This chapter describes the ARM7TDMI processor instruction cycle operations. It
contains the following sections:

. About the instruction cycle timing tables on page 6-3

. Branch and branch with link on page 6-4

. Thumb branch with link on page 6-5

. Branch and Exchange on page 6-6

. Data operations on page 6-7

. Multiply and multiply accumulate on page 6-9

. Load register on page 6-12

. Soreregister on page 6-14

. Load multiple registers on page 6-15

. Sore multiple registers on page 6-17

. Data swap on page 6-18

. SSoftware interrupt and exception entry on page 6-19

. Coprocessor data operation on page 6-20

. Coprocessor data transfer from memory to coprocessor on page 6-21
. Coprocessor data transfer from coprocessor to memory on page 6-23
. Coprocessor register transfer, load from coprocessor on page 6-25

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

6-1

Instruction Cycle Timings

Coprocessor register transfer, store to coprocessor on page 6-26
Undefined instructions and coprocessor absent on page 6-27
Unexecuted instructions on page 6-28

I nstruction speed summary on page 6-29.

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Instruction Cycle Timings

6.1 About the instruction cycle timing tables

In the following tables:

NMREQ and SEQ, are pipelined up to one cycle ahead of the cycleto which they
apply. They are shown in the cycle in which they appear and indicate the next

cycletype.

Theaddress, MAS[1:0], NRW, nOPC, nTRANS, and TBI T signals, that appear
up to half acycle ahead, are shown in the cycle to which they apply. The address
isincremented to prefetch instructions in most cases. Because the instruction
width isfour bytesin ARM state and two bytesin Thumb state, the increment
varies accordingly.

The letter L isused to indicate instruction length:
— four bytesin ARM state
— two bytesin Thumb state.

Theletter i is used to indicate the width of the instruction fetch output by
MAS[1:0]:

— i=2in ARM state represents word accesses

— i=1in Thumb state represents halfword accesses.

Terms placed inside brackets represent the contents of an address.

The symbol indicates zero or more cycles.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 6-3

Instruction Cycle Timings

6.2 Branch and branch with link

A branch instruction calculates the branch destination in the first cycle, while
performing a prefetch from the current PC. This prefetch isdonein &l cases because,
by the time the decision to take the branch has been reached, it is aready too late to
prevent the prefetch.

During the second cycleafetchisperformed from the branch destination, and the return
addressis stored in register 14 if the link bit is set.

The third cycle performs a fetch from the destination +L, refilling the instruction
pipeline. If theinstructionisabranch with link (R14 ismodified) four issubtracted from
R14 to simplify the return instruction from SUB PC,R14,#4 to MOV PC,R14. Thisallows
subroutines to push R14 onto the stack and pop directly into PC upon completion.

The cycletimings arelisted in Table 6-1 where:

. pc is the address of the branch instruction

. alu isthe destination address cal culated by the ARM7TDMI core
. (au) isthe contents of that address.

Table 6-1 Branch instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

1 pc+2L i 0 (pct2L) O 0 0
2 alu i 0 (alu) 0 1 0
3 alu+L i 0 (@u+L) O 1 0
alu+2L
Note

Branch with link is not available in Thumb state.

6-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Instruction Cycle Timings

6.3 Thumb branch with link

A Thumb Branch with Link operation consists of two consecutive Thumb instructions.
Refer to the ARM Architecture Reference Manual for more information.

Thefirst instruction acts like a simple data operation to add the PC to the upper part of
the offset, storing the result in Register 14, LR.

The second instruction which takes a single cycle acts in a similar fashion to the ARM
state branch with link instruction. The first cycle therefore calculates the final branch
destination whilst performing a prefetch from the current PC.

The second cycle of the second instruction performs afetch from the branch destination
and the return address is stored in R14.

The third cycle of the second instruction performs a fetch from the destination +2,
refilling the instruction pipeline and R14 is modified, with 2 subtracted from it, to
simplify thereturn toMOv PC, R14. This makesthe PUSH {..,LR} ; POP {..,PC} type of
subroutine work correctly.

The cycle timings of the complete operation are listed in Table 6-2 where:
. pc isthe address of the first instruction of the operation.

Table 6-2 Thumb long branch with link

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

1 pc+4 1 0 (pc+td) O 1 0

2 pc+6 1 0 (pct6) O 0 0

3 alu 1 0 (au) 0 1 0

4 au+2 1 0 @@u+2) 0 1 0
au+4

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 6-5

Instruction Cycle Timings

6.4 Branch and Exchange

A Branch and Exchange (BX) operation takes three cyclesand issimilar to abranch. In
thefirst cycle, the branch destination and the new core state are extracted from the
register source, whilst performing a prefetch from the current PC. This prefetchis
performed in all cases, since by the time the decision to take the branch has been
reached, it is already too late to prevent the prefetch.

During the second cycle, afetch isperformed from the branch destination address using
the new instruction width, dependent on the state that has been selected.

The third cycle performs a fetch from the destination address +2 or +4 (dependent on
the new specified state), refilling the instruction pipeline.

The cycletimings arelisted in Table 6-3 where:

. W and w represent the instruction width before and after the BX respectively. The
width equalsfour bytesin ARM state and two bytesin Thumb state. For example,
when changing from ARM to Thumb state, W eguals four and w eguals two

. | and i represent the memory access size before and after the BX respectively.
MAS[1:0] equalstwo in ARM state and one in Thumb state. When changing
from Thumb to ARM state, | equalsone and i equals two.

. T and t represent the state of the TBI T before and after the BX respectively. TBIT
equals 0in ARM state and 1 in Thumb state. When changing from ARM to
Thumb state, T equals 0 and t equals 1.

Table 6-3 Branch and exchange instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC TBIT

1 pc +2W | 0 (pct2W) 0 0 0 T

2 alu i 0 (alu) 0 1 0 t

3 alut+w i 0 (alut+w) 0 1 0 t
au+ 2w

6-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Instruction Cycle Timings

6.5 Data operations

A data operation executes in a single datapath cycle unless a shift is determined by the
contents of aregister. A register isread onto the A bus, and a second register or the
immediate field onto the B bus (see Figure 1-3 on page 1-9). The ALU combinesthe A
bus source and the shifted B bus source according to the operation specified in the
instruction, and the result, when required, iswritten to the destination register.

Note

Compare and test operations do not produce results. Only the ALU status flags are
affected.

An instruction prefetch occurs at the same time as the data operation, and the program
counter isincremented.

When the shift length is specified by aregister, an additional datapath cycle occurs
during this cycle. The data operation occurs on the next cyclewhichisan internal cycle
that does not access memory. Thisinternal cycle can be merged with the following
sequential access by the memory manager as the address remains stable through both
cycles.

The PC can be one or more of the register operands. When it isthe destination, external
bus activity can be affected. If the result is written to the PC, the contents of the
instruction pipeline are invalidated, and the address for the next instruction prefetch is
taken from the ALU rather than the address incrementer. The instruction pipelineis
refilled before any further execution takes place, and during this time exceptions are
ignored.

PSR transfer operations (M SR and MRS) exhibit the same timing characteristics asthe
data operations except that the PC is never used as a source or destination register.

The cycletimings are listed in Table 6-4 on page 6-8 where:

. pc is the address of the branch instruction

. alu isthe destination address cal culated by the ARM7TDMI core
. (au) isthe contents of that address.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 6-7

Instruction Cycle Timings

Table 6-4 Data operation instruction cycles

Operation type Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC
normal 1 pc+2L i 0 (pct2L) O 1 0
pc+3L
dest=pc 1 pc+2L i 0 (pct2L) O 0 0
2 alu i 0 (alu) 0 1 0
3 alu+L i 0 (@u+L) O 1 0
alu+2L
shift(Rs) 1 pc+2L i 0 (pct2L) 1 0 0
2 pc+3L i 0 - 0 1 1
pc+3L
shift(Rs) 1 pc+8 2 0 (pc+8) 1 0 0
dest=pc 2 pc+12 2 0 - 0 0 1
3 alu 2 0 (alu) 0 1 0
4 au+4 2 0 (@u+4) O 1 0
alu+8
Note

The shifted register operations where the destination is the PC are not available in

Thumb state.

6-8

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Instruction Cycle Timings

6.6 Multiply and multiply accumulate

The multiply instructions use specia hardware that implements integer multiplication
with early termination. All cycles except the first are internal

The cycle timings are listed in the following tables:

. multiply instruction cycle operations are listed in Table 6-5

. multiply accumulate instruction cycle operations are listed in Table 6-6

. multiply long instruction cycle operations are listed in Table 6-7 on page 6-10

. multiply accumulate long instruction cycle operations are listed in Table 6-8 on
page 6-10.

In Table 6-5 to Table 6-8 on page 6-10:

. m is the number of cycles required by the multiplication algorithm. See
I nstruction speed summary on page 6-29.

Table 6-5 Multiply instruction cycle operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC

1 pc+2L 0 i (pct2L) 1 0 0

2 pc+3L 0 i - 1 0 1

. pc+3L 0 i - 1 0 1

m pc+3L 0 i - 1 0 1

m+1 pc+3L 0 i - 0 1 1
pc+3L

Table 6-6 Multiply accumulate instruction cycle operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC

1 pc+8 0 2 (pct8) 1 0 0
2 pc+8 0 2 - 1 0 1
. pc+12 0 2 - 1 0 1
m pc+12 0 2 - 1 0 1

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 6-9

Instruction Cycle Timings

Table 6-6 Multiply accumulate instruction cycle operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
m+1 pc+12 0 2 - 1 0 1
m+2 pc+12 0 2 - 0 1 1
pc+12
Table 6-7 Multiply long instruction cycle operations
Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
1 pc+8 0 i (pct8) 1 0 0
2 pc+12 0 i - 1 0 1
. pc+12 0 i - 1 0 1
m pc+12 0 i - 1 0 1
m+1 pc+12 0 i - 1 0 1
m+2 pc+12 0 i - 0 1 1
pc+12
Table 6-8 Multiply accumulate long instruction cycle operations
Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
1 pc+8 0 2 (pct8) 1 0 0
2 pc+8 0 2 - 1 0 1
. pc+12 0 2 - 1 0 1
m pc+12 0 2 - 1 0 1
m+1 pc+12 0 2 - 1 0 1
m+2 pc+12 0 2 - 1 0 1
m+3 pc+12 0 2 - 0 1 1
pc+12

6-10

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Instruction Cycle Timings

Note

The multiply accumulate, multiply long, and multiply accumulate long operations are
not availablein Thumb state.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 6-11

Instruction Cycle Timings

6.7 Load register

Thefirst cycleof aload register instruction performsthe address cal culation. During the
second cycle the datais fetched from memory and the base register modification is
performed, if required. During the third cycle the datais transferred to the destination
register, and external memory is unused. Thisthird cycle can normally be merged with
the next prefetch cycle to form one memory N-cycle.

Either the base, or destination, or both, can be the PC, and the prefetch sequenceis
changed if the PC is affected by the instruction.

The data fetch can abort, and in this case the destination modification is prevented. In
addition, if the processor is configured for early abort, the base register write-back is
also prevented.

The cycletimings arelisted in Table 6-9 where:

. C represents the current processor mode:
— ¢=0for User mode
— c=1for all other modes

. d=0 if the T bit has been specified in the instruction (such as LDRT) and d=c at
all other times

. s represents the size of the data transfer shown by MAS[1:0] (see Table 6-10 on
page 6-13).

Table 6-9 Load register instruction cycle operations

Operation type Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nTRANS

normal 1 pc+2L i 0 (pct2L) O 0 0 c
2 alu S 0 (alu) 1 0 1 d
3 pc+3L i 0 - 0 1 1 c

pc+3L
dest=pc 1 pc+8 2 0 (pc+8) 0 0 0 c
2 alu 0 pc’ 1 0 1 d
3 pc+12 2 0 - 0 0 1 C

6-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Instruction Cycle Timings

Table 6-9 Load register instruction cycle operations (continued)

Operation type Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nTRANS

4 pc’ 2 0 (pc’) 0 1 0 c
5 pc +4 2 0 (pc’+4) O 1 0 c
pc +8
Note

Operations where the destination is the PC are not available in Thumb state.

Table 6-10 MAS[1:0] signal encoding

Bitl Bit0 Datasize

0 0 byte
0 1 halfword
1 0 word
1 1 reserved

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 6-13

Instruction Cycle Timings

6.8 Store register

Thefirst cycle of astore register instruction is similar to the first cycle of load register
instruction. During the second cycle the base modification is performed, and at the same
time the data is written to memory. Thereis no third cycle.

The cycletimings arelisted in Table 6-11 where:

. C represents the current processor mode:
— ¢=0for User mode
— c=1for all other modes

. d=0 if the T bit has been specified in the instruction (such as LDRT) and d=c at
all other times.

. s represents the size of the data transfer shown by MAS[1:0] (see Table 6-10 on
page 6-13).

Table 6-11 Store register instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nTRANS

1 pc+2L i 0 (pct2L) O 0 0 c
2 alu s 1 Rd 0 0 1 d
pc+3L

6-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

6.9 Load multi

Instruction Cycle Timings

ple registers

Thefirst cycle of the LDM instruction is used to calculate the address of the first word
to be transferred, while performing a prefetch from memory. The second cycle fetches
thefirst word, and performsthe base modification. During thethird cycle, thefirst word
is moved to the appropriate destination register while the second word is fetched from
memory, and the modified base islatched internally in case it is needed to restore
processor state after an abort. Thethird cycleisrepeated for subsequent fetchesuntil the
last data word has been accessed, then thefinal (internal) cycle moves the last word to
its destination register. The cycle timings are listed in Table 6-12.

Thelast cycle can be merged with the next instruction prefetch to form asingle memory
N-cycle. If an abort occurs, the instruction continues to completion, but all register
modification after the abort is prevented. The final cycleis altered to restore the
modified base register (that could have been overwritten by the load activity before the
abort occurred).

When the PC isin thelist of registersto be loaded the current instruction pipeline must
be invalidated.

Note

The PC isalways the last register to be loaded, so an abort at any point preventsthe PC
from being overwritten.

LDM with PC as a destination register is not available in Thumb state. Use
POP{R1ist,PC} to perform the same function.

Table 6-12 Load multiple registers instruction cycle operations

Destination registers

Cycle Address MAS[1:0] nRW Data NnMREQ SEQ nOPC

Single register

1 pc+2L i 0 (pct2L) O 0 0

2 alu 2 0 (au) 1 0 1

3 pc+3L i 0 - 0 1 1
pc+3L

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 6-15

Instruction Cycle Timings

Table 6-12 Load multiple registers instruction cycle operations (continued)

Destination registers Cycle Address MAS[1:0] nRW Data NMREQ SEQ nOPC
Single register dest=pc 1 pc+2L i 0 (pct2L) O 0 0
2 alu 2 0 pc’ 1 0 1
3 pc+3L i 0 - 0 0 1
4 pc’ i 0 (pc’) 0 1 0
5 pc'+L i 0 (pc’'+L) O 1 0
pc +2L
n registers (n>1) 1 pc+2L i 0 (pct2L) O 0 0
2 alu 2 0 (au) 0 1 1
. alute 2 0 (dute) 0 1 1
n alute 2 0 (dute) 0 1 1
n+1 alute 2 0 (alu+e) 1 0 1
n+2 pc+3L i 0 - 0 1 1
pc+3L
nregisters (n>1) includingpc 1 pc+2L i 0 (pct2L) O 0 0
2 alu 2 0 (alu) 0 1 1
. alute 2 0 (dute) 0 1 1
n alute 2 0 (dute) 0 1 1
n+1 alu+e 2 0 pc 1 0 1
n+2 pc+3L i 0 - 0 0 1
n+3 pc’ i 0 (pc’) 0 1 0
n+4 pc'+L i 0 (pc’'+L) O 1 0
pc +2L

6-16 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

6.10 Store multiple registers

Instruction Cycle Timings

The store multiple instruction proceeds very much asload multipleinstruction, without

the final cycle. The abort handling is much more straightforward as there is no

wholesal e overwriting of registers.

The cycletimings are listed in Table 6-13 where:

Raisthe first register specified

Re are the subsequent registers specified.

Table 6-13 Store multiple registers instruction cycle operations

Register Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC
Single register 1 pc+2L i 0 (pct2L) O 0 0
2 alu 2 1 Ra 0 0 1
pc+3L
nregisters(n>1) 1 pc+8 i 0 (pct2L) O 0 0
2 alu 2 1 Ra 0 1 1
. alu+e 2 1 Re 0 1 1
n alute 2 1 Re 0 1 1
n+1l alu+e 2 1 Re 0 0 1
pc+12
ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 6-17

Instruction Cycle Timings

6.11 Dataswap

Thisissimilar to theload and store register instructions, but the actual swap takes place
in the second and third cycles. In the second cycle, the data is fetched from external
memory. In the third cycle, the contents of the source register are written out to the
external memory. The data read in the second cycle is written into the destination
register during the fourth cycle.

L OCK isdriven HIGH during the second and third cycles to indicate that both cycles
must be allowed to complete without interruption.

The data swapped can be a byte or word quantity. Halfword quantities cannot be
specified.

The swap operation can be aborted in either the read or write cycle, and in both cases
the destination register is not affected.

The cycletimings arelisted in Table 6-14 where:

. s represents the size of the data transfer shown by MAS[1:0] (see Table 6-10 on
page 6-13), s can only represent byte and word transfers. Halfword transfers are
not available.

Table 6-14 Data swap instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC LOCK

1 pc+8 2 0 (pc+8) O 0 0 0
2 Rn b/iw 0 (Rn) 0 0 1 1
3 Rn b/iw 1 Rm 1 0 1 1
4 pc+12 2 0 - 0 1 1 0
pc+12
Note

The data swap operation is not available in Thumb state.

6-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Instruction Cycle Timings

6.12 Software interrupt and exception entry

Exceptions (including software interrupts) force the PC to a particular value and cause
the instruction pipeline to be refilled. During the first cycle the forced addressis
constructed, and a mode change can take place. Thereturn addressis moved to R14 and
the CPSR to SPSR_svc.

During the second cycle the return address is modified to facilitate return, though this
modification isless useful than in the case of the branch with link instruction.

The third cycle is required only to complete the refilling of the instruction pipeline.

The cycletimings are listed in Table 6-15 where:
. pc for:

software interruptsis the address of the SWI instruction

Prefetch Aborts is the address of the aborting instruction

Data Aborts is the address of the instruction following the one which
attempted the aborted data transfer

other exceptions is the address of the instruction following the last one to
be executed before entering the exception

. C represents the current mode-dependent value
. T represents the current state-dependent value
. Xn isthe appropriate trap address.

Table 6-15 Software Interrupt instruction cycle operations

MAS

Cycle Address [1:0] nRW Data NnMREQ SEQ nOPC nTRANS Mode TBIT
1 pc+2L i 0 (pc+2L) O 0 0 C old T
2 Xn 2 0 (Xn) 0 1 0 1 exception O
3 Xn+4 2 0 Xnt4d) O 1 0 1 exception O

Xn+8

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 6-19

Instruction Cycle Timings

6.13 Coprocessor data operation

A coprocessor data operation is a request from the core for the coprocessor to initiate
some action. The action does not have to be completed for some time, but the
coprocessor must commit to doing it before driving CPB LOW.

If the coprocessor is not capable of performing the requested task, it must leave CPA

and CPB HIGH. If it can do the task, but cannot commit right now, it must drive CPA
LOW but leave CPB HIGH until it can commit. The core busy-waits until CPB goes

LOW.

The cycletimings arelisted in Table 6-16 where:
. b represents the busy cycles.

Table 6-16 Coprocessor data operation instruction cycle operations

CP MAS

status Cycle Address nRW [1:0] Data nMREQ SEQ nOPC nCPlI CPA CPB
ready 1 pc+8 0 2 (pct8) O 0 0 0 0 0
pc+12
notready 1 pc+8 0 2 (pct8) 1 0 0 0 0 1
2 pc+8 0 2 - 1 0 1 0 0 1
. pc+8 0 2 - 1 0 1 0 0 1
b pc+8 0 2 - 0 0 1 0 0 0
pc+12
Note

Coprocessor data operations are not available in Thumb state.

6-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Instruction Cycle Timings

6.14 Coprocessor data transfer from memory to coprocessor
For coprocessor transfer instructions from memory the coprocessor must commit to the
transfer only when it is ready to accept the data. When CPB goes L OW, the processor
produces the addresses and expects the coprocessor to take the data at sequentia cycle
rates. The coprocessor is responsible for determining the number of wordsto be
transferred, and indicates the last transfer cycle by driving CPA and CPB HIGH.
The ARM7TDMI processor spendsthefirst cycle (and any busy-wait cycles) generating
the transfer address, and updates the base address during the transfer cycles.
The cycletimings are listed in Table 6-17 where:
. b representsthe busy cycles
. n represents the number of registers.
Table 6-17 Coprocessor data transfer instruction cycle operations
cp MAS
register Cycles Address [1:0] nRW Data nMREQ SEQ nOPC nCPlI CPA CPB
status '
Single 1 pc+8 2 0 (pct8) O 0 0 0 0 0
register 2 alu 2 0 (au) 0 0 1 1 1 1
ready pc+12
Single 1 pc+8 2 0 (pct8) 1 0 0 0 0 1
register 2 pc+8 2 0 - 1 0 1 0 0 1
not ready . pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 0 0 1 0 0 0
b+1 alu 2 0 (alu) 0 0 1 1 1 1
pc+12
nregisters 1 pc+8 2 0 (pct8) O 0 0 0 0 0
(n>1) 2 alu 2 0 (au) 0 1 1 1 0 0
ready . alute 2 0 (@u+s) 0 1 1 1 0 0
n alute 2 0 (@ute) O 1 1 1 0 0
n+1l alute 2 0 (@ute) O 0 1 1 1 1
pc+12

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 6-21

Instruction Cycle Timings

Table 6-17 Coprocessor data transfer instruction cycle operations (continued)

SeF;ister Cycles Address M':AO? nRW Data nMREQ SEQ nOPC nCPI CPA CPB
status
nregisters 1 pc+8 2 0 (pct8) 1 0 0 0 0 1
(n>1) 2 pc+8 2 0 - 1 0 1 0 0 1
not ready . pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 0 0 1 0 0 0
b+1 au 2 0 (au) 0 1 1 1 0 0
. alute 0 (@u+s) 0 1 1 1 0 0
n+b alute 2 0 (@u+s) 0 1 1 1 0 0
n+b+1 alute 2 0 (@u+s) 0 0 1 1 1 1
pc+12
Note

Coprocessor data transfer operations are not available in Thumb state.

6-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Instruction Cycle Timings

6.15 Coprocessor data transfer from coprocessor to memory

The ARM7TDMI processor controls these instructionsin the same way asfor memory
to coprocessor transfers, with the exception that the nRW line is inverted during the
transfer cycle.

The cycletimings are listed in Table 6-18 where:
. b representsthe busy cycles
. n represents the number of registers.

Table 6-18 coprocessor data transfer instruction cycle operations

CP

register Cycle Address '[\ﬁo‘? nRW Data nMREQ SEQ nOPC nCPI CPA CPB
status
Single 1 pc+8 2 0 (pct8) O 0 0 0 0 0
register 2 alu 2 1 CPdata O 0 1 1 1 1
ready - pc+12 - - - - - - - - -
Single 1 pc+8 2 0 (pct8) 1 0 0 0 0 1
register 2 pc+8 2 0 - 1 0 1 0 0 1
notready ¢ pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 0 0 1 0 0 0
b+1 alu 2 1 CPdata 0 0 1 1 1 1
pc+12
nregisters 1 pc+8 2 0 (pct8) O 0 0 0 0 0
(n>1) 2 alu 2 1 CPdata O 1 1 1 0 0
ready . alute 2 1 CPdata O 1 1 1 0 0
n alu+e 2 1 CPdata O 1 1 1 0 0
n+1l alute 2 1 CPdata 0 0 1 1 1 1
pc+12

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 6-23

Instruction Cycle Timings

Table 6-18 coprocessor data transfer instruction cycle operations (continued)

gg)]ister Cycle Address ?ﬁ; nRW Data nMREQ SEQ nOPC nCPI CPA CPB
status
nregisters 1 pc+8 2 0 (pct8) 1 0 0 0 0 1
(n>1) 2 pc+8 2 0 - 1 0 1 0 0 1
not ready . pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 0 0 1 0 0 0
b+1 alu 2 1 CPdata O 1 1 1 0 0
. alu+e 2 1 CPdata 0 1 1 1 0 0
n+b alu+e 2 1 CPdata O 1 1 1 0 0
ntb+l au+e 2 1 CPdata O 0 1 1 1 1
pc+12
Note
Coprocessor data transfer operations are not available in Thumb state.
6-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Instruction Cycle Timings

6.16 Coprocessor register transfer, load from coprocessor

The busy-wait cycles are similar to those described in Coprocessor data transfer from
memory to coprocessor on page 6-21, but the transfer is limited to one word, and the
ARM7TDMI core putsthe datainto the destination register in thethird cycle. Thethird
cycle can be merged with the next prefetch cycle into one memory N-cycle aswith al
processor register load instructions.

The cycletimings are listed in Table 6-19 where:
. b represents the busy cycles.

Table 6-19 Coprocessor register transfer, load from coprocessor

MAS

Cycle Address [1:0] nRW Data nMREQ SEQ nOPC nCPlI CPA CPB
ready 1 pc+8 2 0 (pct8) 1 1 0 0 0 0
2 pc+12 2 0 CPdata 1 0 1 1 1 1
3 pc+12 2 0 - 0 1 1 1 - -
- pc+12
notready 1 pc+8 2 0 (pct8) 1 0 0 0 0 1
2 pc+8 2 0 - 1 0 1 0 0 1
. pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 1 1 1 0 0 0
b+1 pc+12 2 0 CPdata 1 0 1 1 1 1
b+2 pc+12 2 0 - 0 1 1 1 - -
pc+12
Note

Coprocessor register transfer operations are not available in Thumb state.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 6-25

Instruction Cycle Timings

6.17 Coprocessor register transfer, store to coprocessor

Thisis the same as described in Coprocessor register transfer, |load from coprocessor
on page 6-25, except that the last cycle is omitted.

The cycletimings arelisted in Table 6-20 where:
. b represents the busy cycles.

Table 6-20 Coprocessor register transfer, store to coprocessor

Cycle Address I[\g,%]s nRW Data nMREQ SEQ nOPC nCPI CPA CPB
ready 1 pc+8 2 0 (pct8) 1 1 0 0 0 0
2 pc+12 2 1 Rd 0 0 1 1 1 1
pc+12
notready 1 pc+8 2 0 (pct8) 1 0 0 0 0 1
2 pc+8 2 0 - 1 0 1 0 0 1
. pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 1 1 1 0 0 0
b+1 pc+12 2 1 Rd 0 0 1 1 1 1
pc+12
Note

Coprocessor register transfer operations are not available in Thumb state.

6-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Instruction Cycle Timings

6.18 Undefined instructions and coprocessor absent

When the processor attempts to execute an instruction that neither it nor a coprocessor
can perform (including all undefined instructions) this causes the processor to take the
undefined instruction trap.

Cycletimings are listed in Table 6-21 where:
. C represents the current mode-dependent value
. T represents the current state-dependent value.

Table 6-21 Undefined instruction cycle operations

MAS

Cycle Address [1:0] nRW Data NnMREQ SEQ nOPC nCPlI nTRANS Mode TBIT
1 pc+2L i 0 (pct2L) 1 0 0 0 C old T
2 pc+2L i 0 - 0 0 0 1 C old T
3 Xn 2 0 (Xn) 0 1 0 1 1 00100 O
4 Xn+4 2 0 Xn+4) O 1 0 1 1 00100 O
Xn+8
Note

. Coprocessor instructions are not available in Thumb state.
. CPA and CPB are HIGH during the undefined instruction trap.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 6-27

Instruction Cycle Timings

6.19 Unexecuted instructions

Any instruction whose condition code is not met does not execute and adds one cycle
to the execution time of the code segment in which it is embedded (see Table 6-22).

Table 6-22 Unexecuted instruction cycle operations

Cycle Address MAS[1:0] nRW Data NnMREQ SEQ nOPC

1 pc+2L i 0 (pct2L) O 1 0

pc+3L

6-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

6.20 Instruction speed summary

Instruction Cycle Timings

Dueto the pipelined architecture of the CPU, instructions overlap considerably. In a
typical cycle, oneinstruction can be using the data path while the next is being decoded
and the one after that is being fetched. For this reason Table 6-23 presents the
incremental number of cycles required by an instruction, rather than the total number of
cycles for which the instruction uses part of the processor. Elapsed time, in cycles, for
aroutine can be calculated from these figureslisted in Table 6-23. Thesefigures assume
that the instruction is actually executed. Unexecuted instructions take one cycle.

If the condition is not met then dl instructions take one S-cycle. The cycletypesN, S,
I, and C are described in Bus cycle types on page 3-4.

In Table 6-23:

. b isthe number of cycles spent in the coprocessor busy-wait |oop

. mis:

— 1if bits[32:8] of the multiplier operand are all zero or one
— 2if bits[32:16] of the multiplier operand are al zero or one
— 3if bits[31:24] of the multiplier operand are al zero or al one

. n isthe number of words transferred.

Table 6-23 ARM instruction speed summary

Instruction Cycle count Additional

DataProcessing S +l for SHIFT(RS)
+S+ N if R15 written

MSR, MRS S -

LDR S+N+I +S +N if R15 loaded

STR 2N -

LDM NS+N+| +S+N if R15 loaded

STM (n-1)S+2N -

SWP S+2N+| -

B,BL 2S+N -

SWI, trap 25+N -

MUL S+ml -

MLA S+(m+1)l -

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved.

6-29

Instruction Cycle Timings

Table 6-23 ARM instruction speed summary (continued)

Instruction Cycle count Additional
MULL SHm+1)l -
MLAL S+(m+2)I -
CDP S+bl -
LDC, STC (n-1)S+2N+bl -
MCR N+bl+C -
MRC S+(b+1)I+C -

6-30 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Chapter 7

AC and DC Parameters

This chapter gives the AC timing parameters of the ARM7TDMI core. It contains the
following sections:

. Timing diagrams on page 7-2
. Notes on AC Parameters on page 7-22
. DC parameters on page 7-32.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 7-1

AC and DC Parameters

7.1 Timing diagrams

The AC timing diagrams provided in this section are as follows.

General timings on page 7-3

ABE address control on page 7-5
Bidirectional data write cycle on page 7-5
Bidirectional data read cycle on page 7-6
Data bus control on page 7-7

Output 3-state time on page 7-8
Unidirectional data write cycle on page 7-9
Unidirectional data read cycle on page 7-9
Configuration pin timing on page 7-10
Coprocessor timing on page 7-11
Exception timing on page 7-12
Synchronous interrupt timing on page 7-13
Debug timing on page 7-13

DCC output timing on page 7-14
Breakpoint timing on page 7-15

TCK and ECLK relationship on page 7-15
MCLK timing on page 7-16

Scan general timing on page 7-17

Reset period timing on page 7-18

Output enable and disable times due to HIGHZ TAP instruction on page 7-19
Output enable and disable times due to data scanning on page 7-19.
ALE address control on page 7-20

APE address control on page 7-21.

Note

Each diagram is provided with atable that describes the timing parameters. In the
tables:

the letter f at the end of a signal name indicates the falling edge
the letter r at the end of a signal name indicates the rising edge.

7-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

MCLK
ECLK I—
cdel)
Tcdel)
nMREQ
SEQ
T >
¢ Tmsd)
nEXEC
INSTRVALID
T, —»
Texd !
A[31:0]
T, —»
Taddr L
nRW
T P
T —>
MASI[1:0]
LOCK
T, —»
Tbld L
nM[4:0]
nTRANS
TBIT <« T, .
ded L
nOPC
«Topch+
¢ Topcd)
Figure 7-1 General timings
Note

In Figure 7-1, nWAI T, APE, ALE, and ABE are all HIGH during the cycle shown.
Tcge iSthe delay, on either edge (whichever is greater), from the edge of M CLK to

ECLK.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

7-3

AC and DC Parameters

The timing parameters used in Figure 7-1 on page 7-3 are listed in Table 7-1.

Table 7-1 General timing parameters

Symbol Parameter Parameter type
Taddr MCLKTr to address valid Maximum
Tah Address hold time from MCLKr Minimum
Thoid MCLKrtoMAS[1:0] and LOCK Maximum
Tolh MAS[1:0] and LOCK hold from MCLKr Minimum
Tede MCLK to ECLK delay Maximum
Texd MCLKf to nEXEC and INSTRVALID valid Maximum
Texh NnEXEC and INSTRVALID hold time from Minimum
MCLKf
Trmdd MCLKrto nTRANS, nM[4:0],and TBIT valid Maximum
Trmdh nTRANS and nM[4:0] hold timefrom MCLKr ~ Minimum
Trsd MCLKftonMREQ and SEQ valid Maximum
Tmsh nMREQ and SEQ hold time from M CLKf Minimum
Toped MCLKr tonOPC valid Maximum
Topch nOPC hold time from MCLKr Minimum
Trwd MCLKr tonRW valid Maximum
Trwh nRW hold time from M CLKr Minimum

7-4 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

AC and DC Parameters

MCLK

ABE | ¥
A[31:0]
nRW
L

LOCK
nOPC

nTRANS L [
MAS[1:0] Tpe > €

Figure 7-2 ABE address control
The timing parameters used in Figure 7-2 are listed in Table 7-2.

Table 7-2 ABE address control timing parameters

Symbol Parameter Parameter type
Tabe Addressbusenabletime Maximum
Tabz Addressbusdisabletime Maximum
MCLK
nENOUT | | 1 i
Tnen# D I Tnenhgb Hﬁ
D[31:0] { —
HTdout"% Tdoh" Nﬁ
Figure 7-3 Bidirectional data write cycle
Note

In Figure 7-3 DBE isHIGH and nENIN is LOW during the cycle shown.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 7-5

AC and DC Parameters

The timing parameters used in Figure 7-3 on page 7-5 are listed in Table 7-3.

Table 7-3 Bidirectional data write cycle timing parameters

Symbol Parameter

Parameter type

Tdoh DOUT[31:0] hold from M CLKf Minimum
T dout MCLKf toD[31:0] vaid Maximum
Then MCLKf tonENOUT valid Maximum
Thenh NnENOUT hold time from MCLKf Minimum
MCLK
nENOUT p/ \ __|
Tnengb : ¢ T ihg» :‘ ¢
D[31:0])
Tye—> <+
BL[3:0]
Tbylh» <
Tbyls% <+
Figure 7-4 Bidirectional data read cycle
Note

In Figure 7-4, DBE isHIGH and nENIN is LOW during the cycle shown.

The timing parameters used in Figure 7-4 are listed in Table 7-4.

Table 7-4 Bidirectional data read cycle timing parameters

Symbol Parameter

Parameter type

Toyih BL[3:0] hold time from MCLKf

Minimum

Thyls BL[3:0] set up to fromMCLKr

Minimum

7-6 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

AC and DC Parameters

Table 7-4 Bidirectional data read cycle timing parameters (continued)

Symbol Parameter Parameter type
Tdin DIN[31:0] hold timefrom MCLKf Minimum
Tdis DIN[31:0] setup timeto MCLKf Minimum
Then MCLKf to nENOUT vdid Maximum
MCLK
Tdbnenﬂ i ¢
nENOUT ! /
% i ‘7Tdbnen
DBE ‘ /
Tdbz"; < :
, Tdbe;’; ; > T,
D[31:0] (. —(»
*Tdout+
NENIN ; ‘
Tdbz": < ;
Tdbe": -
Figure 7-5 Data bus control
Note

Thecycleshownin Figure 7-5isadatawrite cycle because nENOUT wasdriven LOW
during phase one. Here, DBE hasfirst been used to modify the behavior of thedata bus,
and then nENIN.

The timing parameters used in Figure 7-5 are listed in Table 7-5.

Table 7-5 Data bus control timing parameters

Symbol Parameter Parameter type
Tdbe Data bus enable time from DBEr Maximum
Tdbnen DBE to nENOUT vdid Maximum

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 7-7

AC and DC Parameters

Table 7-5 Data bus control timing parameters (continued)

Symbol Parameter Parameter type
Tdbz Data busdisabletime from DBEf Maximum
Tdoh DOUT[31:0] hold from MCLKf Minimum
T dout MCLKf to D[31:0] valid Maximum
MCLK
TBE R
A[31:0]
D[31:0]
nRW ‘
LOCK »
nOPC |
nTRANS T,
MAS[1:0] ; Tpo—»

Figure 7-6 Output 3-state time
The timing parameters used in Figure 7-6 are listed in Table 7-6.

Table 7-6 Output 3-state time timing parameters

Symbol Parameter Parameter type
Ttoe Address and Data bus enabletime from TBEr Maximum
Ttoz Address and Data bus disable time from TBEf ~ Maximum

7-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

MCLK _
Tneng» ;
nENOUT B\ /-
Tdohu» .
DOUT[31:0]
deoutu#

Figure 7-7 Unidirectional data write cycle

The timing parameters used in Figure 7-7 are listed in Table 7-7.

Table 7-7 Unidirectional data write cycle timing parameters

Symbol Parameter Parameter type
Tdohu DOUT[31:0] hold timefrom MCLKf Minimum
Tdoutu MCLKf to DOUT[31:0] valid Maximum
Then MCLKf to nENOUT valid Maximum

MCLK
nENOUT \ S—
Tnen —»> ¢ <+ Tdisu »>
DIN[31:0] , X
Tdihu» :‘
BL[3:0] X
Toyn > < |
Tbyls i ‘

Figure 7-8 Unidirectional data read cycle

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

7-9

AC and DC Parameters

The timing parameters used in Figure 7-8 on page 7-9 are listed in Table 7-8.

Table 7-8 Unidirectional data read cycle timing parameters

Symbol Parameter Parameter type
Toyih BL[3:0] hold time from MCLKf Minimum
Thyls BL[3:0] set up to fromMCLKr Minimum
Tdihu DIN[31:0] hold timefrom MCLKf Minimum
Tdisu DIN[31:0] set up timeto M CLKf Minimum
Then MCLKf to nENOUT vdid Maximum
MCLK
Tcth" <
BIGEND
T <+
ISYNC
Tys—™ <+
T <

Figure 7-9 Configuration pin timing
The timing parameters used in Figure 7-9 are listed in Table 7-9.

Table 7-9 Configuration pin timing parameters

Symbol Parameter Parameter type
Teth Configurations hold time ~ Minimum
Tets Configuration setup time ~ Minimum

7-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

4——Phase 1 ——p»4¢——Phase 2——»
MCLK
T, ——> TP -
nCPI X X X
e
CPA
CPB —
e
nMREQ
SEQ
T, P>
Figure 7-10 Coprocessor timing
Note

In Figure 7-10, usually nMREQ and SEQ become valid T after the falling edge of
MCLK. Inthis cycle the core has been busy-waiting for a coprocessor to complete the
instruction. If CPA and CPB change during phase 1, the timing of nMREQ and SEQ
depends on T pms. Most systems can generate CPA and CPB during the previous phase
2, and so the timing of NM REQ and SEQ is aways Tmsg-

The timing parameters used in Figure 7-10 are listed in Table 7-10.

Table 7-10 Coprocessor timing parameters

Symbol Parameter Parameter type
Teph CPA,CPB hold timefrom MCLKr ~ Minimum
Tepi MCLKT to nCPI valid Maximum
Tepih nCPI hold time from M CLKf Minimum
Tepms CPA, CPB to nMREQ, SEQ Maximum
Teps CPA, CPB setup to MCLKr Minimum

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 7-11

AC and DC Parameters

MCLK

347 Tabts —>< Tabth >
ABORT / _
«T peT, »
nFIQ = = \
nIRQ | | ‘

H»Trs’<Trmh:

nRESET / /

Figure 7-11 Exception timing
Note

In Figure 7-11, to guarantee recognition of the asynchronous interrupt (ISY NC=0) or
reset source, the appropriate signals must be setup or held as follows:

. setup Tis and Ty respectively before the corresponding clock edge
. hold Tim and Tis respectively after the corresponding clock edge.

These inputs can be applied fully asynchronously where the exact cycle of recognition
is unimportant.

The timing parameters used in Figure 7-11 are listed in Table 7-11.

Table 7-11 Exception timing parameters

Symbol Parameter E/a;:m eter
Tabth ABORT hold time from M CLKf Minimum
Tants ABORT set uptimeto MCLKf Minimum
Tim Asynchronous interrupt guaranteed nonrecognition time, with ISYNC=0 Maximum
Tis Asynchronous interrupt set up time to M CLKf for guaranteed recognition, with ISYNC=0 Minimum
Trm Reset guaranteed nonrecognition time Maximum
Trs Reset setup time to M CLKr for guaranteed recognition Minimum

7-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

MCLK
T.. > L
nFIQ s \
nIRQ :
Toin ™ ha

Figure 7-12 Synchronous interrupt timing
The timing parameters used in Figure 7-12 are listed in Table 7-12.

Table 7-12 Synchronous interrupt timing parameters

Symbol Parameter Parameter type
Tsh Synchronous nFIQ, nIRQ hold from MCLKf with ISYNC=1 Minimum
Tsis Synchronous nFIQ, nlRQ setup to M CLKf, with ISYNC=1 Minimum
MCLK
Tdbqh+ ¢
DBGACK
Tdqu !
BREAKPT
< Tbrks > Tbrkh —»
DBGRQ
¢j|'rqs+¢Trqh+
EXTERN[1]
< Texts Ranl Texth »>
DBGRQI N
Tdbgrq
RANGEOUTO
RANGEOUT1
rgh *+—
«T _—p

Figure 7-13 Debug timing

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 7-13

AC and DC Parameters

The timing parameters used in Figure 7-13 on page 7-13 are listed in Table 7-13.

Table 7-13 Debug timing parameters

Symbol Parameter Parameter type
Torkh Hold time of BREAKPT from MCLKTr Minimum
Thrks Set up time of BREAKPT to MCLKr Minimum
Tdbgd MCLKr to DBGACK valid Maximum
Tdbgh DGBACK hold timefrom MCLKr Minimum
Tdbgrq DBGRQ to DBGRQI vdid Maximum
Texth EXTERN][1:0] hold time from MCLKf Minimum
Texts EXTERN[1:0] set up timeto MCLKf Minimum
Trg MCLKf to RANGEOUTO, RANGEOUT1 valid Maximum
Trgh RANGEOUTO0, RANGEOUT1 hold time from MCLKf Minimum
Trgh DBGRQ guaranteed non-recognition time Minimum
Trgs DBGRQ set up timeto M CLKr for guaranteed recognition ~ Minimum
MCLK
COMMTX
COMMRX
«T,

commd

Figure 7-14 DCC output timing

The timing parameter used in Figure 7-14 is listed in Table 7-14.

Table 7-14 DCC output timing parameters

Parameter

Symbol Parameter
type

Tcommd MCLKrtoCOMMRX, COMMTX vaid Maximum

7-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

MCLK

BREAKPT

nCPI
nEXEC
nMREQ
SEQ Tocems ™! <
INSTRVALID

.

Figure 7-15 Breakpoint timing

Note

In Figure 7-15, BREAKPT changing in the LOW phase of MCLK (to signal a
watchpointed store) affects nCPIl, NEXEC, nMREQ, and SEQ in the same phase.

The timing parameter used in Figure 7-15 is listed in Table 7-15.

Table 7-15 Breakpoint timing parameters

Parameter

Symbol Parameter
type

Thcems BREAKPT to nCPI, nEXEC, n(MREQ, SEQ delay Maximum

TCK
Tctdel"
ECLK S
Tctdel" ¢
Figure 7-16 TCK and ECLK relationship
Note

In Figure 7-16, Tqe IS the delay, on either edge (whichever is greater), from the edge
of TCK to ECLK.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 7-15

AC and DC Parameters

The timing parameter used in Figure 7-16 on page 7-15 is listed in Table 7-16.

Table 7-16 TCK and ECLK timing parameters

Symbol Parameter Parameter type
Tectdel TCK toECLK delay Maximum
MCLK
~ \ngkl HFTmckh% ‘
nWAIT ! |
JR—— %‘TWS> <Twh’; L
ECLK B\
nMREQ (
SEQ
L
A[31:0] ;
<7Taddr4>‘
Figure 7-17 MCLK timing
Note

In Figure 7-17, the coreis not clocked by the HIGH phase of MCLK when nWAIT is
LOW. During the cycles shown, nM REQ and SEQ change once, during the first LOW
phase of MCL K, and A[31:0] change once, during the second HIGH phase of MCLK.
Phase 2 is shown for reference. Thisistheinternal clock from which the core times all
itsactivity. Thissignal isincluded to show how the HIGH phase of the external M CL K
has been removed from the internal core clock.

The timing parameters used in Figure 7-17 are listed in Table 7-17.

Table 7-17 MCLK timing parameters

Symbol Parameter Parameter type
Taddr MCLKr to address valid Maximum
Tmcknh MCLK HIGH time Minimum
Tmckl MCLK LOW time Minimum

7-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

Table 7-17 MCLK timing parameters (continued)

Symbol Parameter Parameter type
Tmsd MCLKftonMREQ and SEQ valid Maximum
Twh nWAIT hold from MCLK f Minimum
Tws NWAIT setupto MCLKr Minimum
TCK
« Tosc « Tosen »
TMS
TDI
> Toson Ty T
TDO
Tbsod
Data in
Tbsss Tbssh
Data out X
Tosan * Tosan [+
Tbsdd Tbsdd

Figure 7-18 Scan general timing

The timing parameters used in Figure 7-18 are listed in Table 7-18.

Table 7-18 Scan general timing parameters

Symbol Parameter Parameter type
Thsch TCK high period Minimum
Thsal TCK low period Minimum
Thsdd TCK to data output valid Maximum
Thsdh Data output hold timefrom TCK ~ Minimum
Tosih TDI, TM S hold from TCKr Minimum
Thss TDI, TM S setup to TCKr Minimum
Thsod TCKf to TDO vadid Maximum

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 7-17

AC and DC Parameters

Table 7-18 Scan general timing parameters (continued)

Symbol Parameter Parameter type

Thsoh TDO hold time from TCKf Minimum

Thssh 1/0 signal setup from TCKr Minimum

Thsss 1/0 signal setup to TCKr, Minimum

nRESET |
e T

v

| rstl
nTRST |
¢ T

| bsr

A 4

I

D[31:0] |
DBGACK !
nCPI_
nENOUT
NEXEC-p. ,‘fT
nMREQ '
SEQ

rstd

Figure 7-19 Reset period timing
The timing parameters used in Figure 7-19 are listed in Table 7-19.

Table 7-19 Reset period timing parameters

Symbol Parameter Parameter type
Thsr NTRST reset period Minimum
Trstd nRESETT to D[31:0], DBGACK, nCPI, nENOUT, nEXEC, nMREQ, SEQ valid Maximum
Trg NRESET LOW for guaranteed reset Minimum

7-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

TCK

1‘ Tbsz « } #‘ Tbse ol
Al T N 1 /A
D/ | g

Figure 7-20 Output enable and disable times due to HIGHZ TAP instruction

Note

Figure 7-20 showsthe Tpse, Output enabletime, parameter and Tz, Output disable time,
when the HIGHZ TAP instruction is loaded into the instruction register.

The timing parameters used in Figure 7-20 are listed in Table 7-20.

TCK | T

*1‘ FTbsz Tbse*i ’«
Al N\ -
D[] _/ -

Figure 7-21 Output enable and disable times due to data scanning

Note

Figure 7-21 showsthe Ty, Output enabletime, parameter and Ty, output disabletime
when data scanning, due to different logic levels being scanned through the scan cells
for ABE and DBE.

The timing parameters used in Figure 7-21 are listed in Table 7-20.

Table 7-20 Output enable and disable timing parameters

Symbol Parameter Parameter type
Thee Output enabletime Maximum
Thez Output disabletime Maximum

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. 7-19

AC and DC Parameters

A B Phase 1 —p4—Phase 2—p

MCLK

ALE

-~

* Tald *l‘

A[31:0]

LOCK

nOPC ‘
nTRANS T,
MAS[1:0]

aleh

Figure 7-22 ALE address control

Note
In Figure 7-22, T4 isthetime by which AL E must be driven LOW to latch the current
addressin phase2. If ALE isdriven LOW after Tyq, then anew addressislatched. This
is known as address breakthrough.

The timing parameters used in Figure 7-22 are listed in Table 7-21.

Table 7-21 ALE address control timing parameters

Symbol Parameter tF;ag:meter
Tad Address group latch output time Maximum
Tae Address group latch open output delay ~ Maximum
Taen Address group latch output hold time Minimum

7-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

MCLK

APE |

aph
A[31:0]
nRW T
LOCK
nOPC
nTRANS Tope™> -«

ape
MAS[1:0]

apeh

Figure 7-23 APE address control
The timing parameters used in Figure 7-23 are listed in Table 7-22.

Table 7-22 APE address control timing parameters

Symbol Parameter g?:m eter
Tape M CLKf to address group valid Maximum
Tapen Address group output hold time from MCLKf Minimum
Taph APE hold time from MCLKf Minimum
Taps APE set up timeto MCLKr Minimum

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 7-21

AC and DC Parameters

7.2 Notes on AC Parameters
Table 7-23 lists the AC timing parametersin alphabetical order.
Contact your supplier for AC timing parameter values.
In Table 7-23:
. the letter f at the end of a signal name indicates the falling edge
. the letter r at the end of a signal name indicates the rising edge.
Table 7-23 AC timing parameters used in this chapter
Figure
Symbol Parameter Parameter cross
Type reference
Tabe Address bus enable time Maximum Figure 7-2
on page 7-5
Tabth ABORT hold time from MCLKf Minimum Figure 7-11
on
page 7-12
Tabts ABORT set uptimeto M CLKf Minimum Figure 7-11
on
page 7-12
Tabz Address bus disable time Maximum Figure 7-2
on page 7-5
Taddr MCLKTr to address valid Maximum Figure 7-1
on page 7-3
Figure 7-17
on
page 7-16
Tan Address hold time from MCLKr Minimum Figure 7-1
on page 7-3
Tad Address group latch time Maximum Figure 7-22
on
page 7-20
Tae Address group latch open output delay Maximum Figure 7-22
on
page 7-20
7-22 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

Table 7-23 AC timing parameters used in this chapter (continued)

Symbol

Parameter

Parameter
Type

Figure
Cross
reference

Talen

Address group latch output hold time

Minimum

Figure 7-22
on
page 7-20

MCLKf to address group valid

Maximum

Figure 7-23
on
page 7-21

Address group output hold time from MCLKf

Minimum

Figure 7-23
on
page 7-21

APE hold time from M CLKf

Minimum

Figure 7-23
on
page 7-21

APE set uptimeto M CLKr

Minimum

Figure 7-23
on
page 7-21

Theems

BREAKPT tonCPI, nEXEC, nMREQ, SEQ delay

Maximum

Figure 7-13
on
page 7-13

Thid

MCLKr to MAS[1:0] and LOCK

Maximum

Figure 7-1
on page 7-3

Toih

MAS[1:0] and LOCK hold from MCLKr

Minimum

Figure 7-1
on page 7-3

Torkh

Hold time of BREAKPT from MCLKTr

Minimum

Figure 7-13
on
page 7-13

Torks

Set up time of BREAK PT to M CLKr

Minimum

Figure 7-13
on
page 7-13

Tosch

TCK high period

Minimum

Figure 7-18
on
page 7-17

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

7-23

AC and DC Parameters

Table 7-23 AC timing parameters used in this chapter (continued)

Parameter Figure
Symbol Parameter Cross

Type reference

Thsl TCK low period Minimum Figure 7-18
on
page 7-17

Thsdd TCK to data output valid Maximum Figure 7-18
on
page 7-17

Thsdh Data output hold time from TCK Minimum Figure 7-18
on
page 7-17

Thse Output enable time Maximum Figure 7-20
on
page 7-19
Figure 7-21
on
page 7-19

Tosh TDI, TM S hold from TCKr Minimum Figure 7-18
on
page 7-17

Thosis TDI, TM S setup to TCKr Minimum Figure 7-18
on
page 7-17

Thsod TCKfto TDO vdid Maximum Figure 7-18
on
page 7-17

Thsoh TDO hold time from TCKf Minimum Figure 7-18
on
page 7-17

Thsr nTRST reset period Minimum Figure 7-19
on
page 7-18

Tpssh 1/0 signal setup from TCKr Minimum Figure 7-18
on
page 7-17

7-24

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

Table 7-23 AC timing parameters used in this chapter (continued)

Symbol

Parameter

Parameter
Type

Figure
Cross
reference

Thsss

1/0 signal setup to TCKr,

Minimum

Figure 7-18
on
page 7-17

Tos

Output disable time

Maximum

Figure 7-20
on

page 7-19
Figure 7-21
on

page 7-19

Thyln

BL[3:0] hold time from MCLKf

Minimum

Figure 7-4
on page 7-6
Figure 7-8
on page 7-9

Tbyl s

BL[3:0] set up to from MCLKr

Minimum

Figure 7-4
on page 7-6
Figure 7-8
on page 7-9

Tedd

MCLK to ECLK delay

Maximum

Figure 7-1
on page 7-3

Telkbs

TCK to boundary scan clocks

Maximum

Teommd

MCLKrtoCOMMRX, COMMTX valid

Maximum

Figure 7-14
on
page 7-14

Tcph

CPA,CPB hold time from MCLKr

Minimum

Figure 7-10
on
page 7-11

Tcpi

MCLKf tonCPI valid

Maximum

Figure 7-10
on
page 7-11

Tcpi h

nCPI hold time from MCLKf

Minimum

Figure 7-10
on
page 7-11

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

7-25

AC and DC Parameters

Table 7-23 AC timing parameters used in this chapter (continued)

Symbol

Parameter

Parameter
Type

Figure
Cross
reference

Tepms

CPA, CPB to nMREQ, SEQ

Maximum

Figure 7-10
on
page 7-11

Teps

CPA, CPB setup to MCLKTr

Minimum

Figure 7-10
on
page 7-11

Totde

TCK to ECLK delay

Maximum

Figure 7-16
on
page 7-15

Teth

Config hold time

Minimum

on
page 7-10
on

page 7-10F
igure 7-9
on

page 7-10

Tets

Config setup time

Minimum

Figure 7-9
on
page 7-10

Tdbe

Data bus enable time from DBEr

Maximum

Figure 7-5
on page 7-7

Tdbgd

MCLKr to DBGACK valid

Maximum

Figure 7-13
on
page 7-13

Tdbgh

DGBACK hold timefrom MCLKr

Minimum

Figure 7-13
on
page 7-13

Tdbgrq

DBGRQ to DBGRQI valid

Maximum

Figure 7-13
on
page 7-13

Tdonen

DBE to nENOUT valid

Maximum

Figure 7-5
on page 7-7

Tdbz

Data bus disable time from DBEf

Maximum

Figure 7-5
on page 7-7

7-26

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

AC and DC Parameters

Table 7-23 AC timing parameters used in this chapter (continued)

Figure
Parameter
Symbol Parameter cross
Type reference

Tdckf DCLK induced, TCKf to various outputs valid Maximum -

Tdckh DCLK induced, various outputs hold from TCKf Minimum -

Tdckr DCLK induced, TCKr to various outputs valid Maximum -

Tdckrh DCLK induced, various outputs hold from TCKr Minimum -

Tgin DIN[31:0] hold time from M CLKf Minimum Figure 7-4
on page 7-6

Tdinu DIN[31:0] hold time from M CLKf Minimum Figure 7-8
on page 7-9

Tdis DIN[31:0] setup timeto M CLKf Minimum Figure 7-4
on page 7-6

Tdisu DIN[31:0] set up timeto MCLKf Minimum Figure 7-8
on page 7-9

Tdoh DOUT[31:0] hold from MCLKf Minimum Figure 7-3
on page 7-5
Figure 7-5
on page 7-7

Tdohu DOUT[31:0] hold time from MCLK f Minimum Figure 7-7
on page 7-9

Tdout MCLKf toD[31:0] valid Maximum Figure 7-3
on page 7-5
Figure 7-5
on page 7-7

Tdoutu MCLKf toDOUT[31:0] vdid Maximum Figure 7-7
on page 7-9

Tecapd TCK to ECAPCLK changing Maximum -

Texd MCLKftonEXEC and INSTRVALID valid Maximum Figure 7-1
on page 7-3

Texh NnEXEC and INSTRVALID hold timefrom MCLKf Minimum Figure 7-1
on page 7-3

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. 7-27

AC and DC Parameters

Table 7-23 AC timing parameters used in this chapter (continued)

Symbol

Parameter

Parameter
Type

Figure
Cross
reference

Texth

EXTERNI[1:0] hold time from M CLKf

Minimum

Figure 7-13
on
page 7-13

Texts

EXTERN[1:0] set up timeto M CLKf

Minimum

Figure 7-13
on
page 7-13

Asynchronous interrupt guaranteed nonrecognition time,
with ISYNC=0

Maximum

Figure 7-11
on
page 7-12

Asynchronous interrupt set up time to M CLKf for guaranteed
recognition, with ISY NC=0

Minimum

Figure 7-11
on
page 7-12

Trmckh

MCLK HIGH time

Minimum

Figure 7-17
on
page 7-16

Trmeki

MCLK LOW time

Minimum

Figure 7-17
on
page 7-16

Trmdd

MCLKrtonTRANS, nM[4:0], and TBIT valid

Maximum

Figure 7-1
on page 7-3

Trmdn

NnTRANS and nM [4:0] hold time from MCLKr

Minimum

Figure 7-1
on page 7-3

Trmsd

MCLKf tonMREQ and SEQ valid

Maximum

Figure 7-1
on page 7-3
Figure 7-17
on

page 7-16

Trmsh

nMREQ and SEQ hold time from M CLKf

Minimum

Figure 7-1
on page 7-3

7-28

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

AC and DC Parameters

Table 7-23 AC timing parameters used in this chapter (continued)

Symbol

Parameter

Parameter
Type

Figure
Cross
reference

Tnen

MCLKf tonENOUT valid

Maximum

Figure 7-3
on page 7-5
Figure 7-4
on page 7-6
Figure 7-7
on page 7-9
Figure 7-8
on page 7-9

Thenh

nENOUT hold time from MCLKf

Minimum

Figure 7-3
on page 7-5

Topcd

MCLKr tonOPC valid

Maximum

Figure 7-1
on page 7-3

Topch

nOPC hold timefrom MCLKr

Minimum

Figure 7-1
on page 7-3

MCLKf to RANGEOUTO, RANGEOUT1 vaid

Maximum

Figure 7-13
on
page 7-13

Trgh

RANGEOUTO, RANGEOUT1 hold time from M CLKf

Minimum

Figure 7-13
on
page 7-13

Trm

Reset guaranteed nonrecognition time

Maximum

Figure 7-11
on
page 7-12

Trqh

DBGRQ guaranteed non-recognition time

Minimum

Figure 7-13
on
page 7-13

Trqs

DBGRQ set up time to MCLKr for guaranteed recognition

Minimum

Figure 7-13
on
page 7-13

Reset setup timeto M CLKr for guaranteed recognition

Minimum

Figure 7-11
on
page 7-12

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

7-29

AC and DC Parameters

Table 7-23 AC timing parameters used in this chapter (continued)

Figure
Parameter
Symbol Parameter cross
Type reference
Trad nRESET(to D[31:0], DBGACK, nCPI, nENOUT, nEXEC, nMREQ, Maximum Figure 7-19
SEQ valid on
page 7-18
Trg NRESET LOW for guaranteed reset Minimum Figure 7-19
on
page 7-18
Trwd MCLKr tonRW valid Maximum Figure 7-1
on page 7-3
Trwh nRW hold time from MCLKr Minimum Figure 7-1
on page 7-3
Tsdtd SDOUTBSto TDO valid Maximum -
Tehost TCK to SHCLKBS, SHCLK2BSfaling Maximum -
Tehbsr TCK to SHCLKBS, SHCLK?2BSrising Maximum -
Tsh Synchronous nFIQ, nIRQ hold from MCLK f with ISYNC=1 Minimum Figure 7-12
on
page 7-13
Tss Synchronous nFIQ, nIRQ setup to MCLKf, with ISYNC=1 Minimum Figure 7-12
on
page 7-13
Tioe Address and Data bus enable time from TBEr Maximum Figure 7-6
on page 7-8
Ttoz Address and Data bus disable time from TBEf Maximum Figure 7-6
on page 7-8
Trckf TCK toTCK1, TCK2faling Maximum -
Tickr TCK toTCK1, TCK2rising Maximum -
Ttdbgd TCK to DBGACK, DBGRQI changing Maximum -
Tiptd TCKf to TAP outputs Maximum -
Tipth TAP outputs hold time from TCKf Minimum -
Ttprd TCKTr to TAP outputs Maximum -
7-30 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

AC and DC Parameters

Table 7-23 AC timing parameters used in this chapter (continued)

Figure
Parameter
Symbol Parameter Cross
Type
reference
Ttprh TAP outputs hold time from TCKr Minimum -
Ttrstd nTRSTf to every output valid Maximum -
Tirstd nTRSTf to TAP outputs valid Maximum -
Tirsts NTRSTr setup to TCKr Maximum -
Twh nWAIT hold from MCLKf Minimum Figure 7-17
on
page 7-16
Tws NWAIT setup to MCLKr Minimum Figure 7-17
on
page 7-16

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

7-31

AC and DC Parameters

7.3 DC parameters

Contact your supplier for information on:
. operating conditions
. maximum ratings.

7-32 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Appendix A
Signal and Transistor Descriptions

This appendix describes the signals and transistors in the ARM7TDMI processor. It
contains the following sections:

. Transistor dimensions on page A-2
. Sgnal types on page A-3
. Transistor dimensions on page A-2.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. A-1

Signal and Transistor Descriptions

A.l Transistor dimensions

Table A-1 shows the dimensions of the output driver for a0.18um ARM7TDMI (Rev
4) processor.

Table A-1 Transistor gate dimensions of the output driver for a 0.18 um process

MOSFET \wigth Length
type

P 16.2 um 0.18 pm
N 8.28 um 0.18 um

A-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Signal and Transistor Descriptions

A.2 Signal types
Table A-2 lists the signal types used in the ARM7TDMI (Rev 4) processor.

Table A-2 Signal types

Type Description

IC Input CMOS thresholds
P Power
o Output

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. A-3

Signal and Transistor Descriptions

A3

Signal descriptions

Table A-3 describes all the signals used for the ARM7TDMI (Rev 4) processor.

Table A-3 Signal descriptions

Name

Type

Description

A[31:0]
Addresses

Thisisthe 32-bit address bus. ALE, ABE, and APE are used to control
when the address busis valid.

ABE
Address bus enable

The address bus drivers are disabled when thisis LOW, putting the
address bus into a high impedance state. This also controls the LOCK,
MAS[1:0], nRW, nOPC, and nTRANS signalsin the same way. ABE
must betied HIGH if thereis no system requirement to disable the
address drivers.

ABORT
Memory abort

The memory system usesthissignal to tell the processor that arequested
accessis not allowed.

ALE
Address latch enable

This signal is provided for backwards compatibility with older ARM
processors. For new designs, if address retiming isrequired, ARM
Limited recommends the use of APE, and for AL E to be connected
HIGH.

The address bus, LOCK, MAS[1:0], nRW, nOPC, and nTRANS
signals are latched when thisis held LOW. This alows these address
signals to be held valid for the complete duration of a memory access
cycle. For example, when interfacing to ROM, the address must be valid
until after the data has been read.

APE
Address pipeline enable

Selects whether the address bus, LOCK, MAS[1:0], NnRW, nTRANS,
and nOPC signals operate in pipelined (APE is HIGH) or depipelined
mode (APE isLOW).

Pipelined mode is particularly useful for DRAM systems, whereit is
desirable to provide the address to the memory as early as possible, to
allow longer periods for address decoding and the generation of DRAM
control signals. Inthismode, the address bus does not remain valid to the
end of the memory cycle.

Depipelined mode can be useful for SRAM and ROM access. Here the
address bus, LOCK, MAS[1:0], nRW, nTRANS, and nOPC signals
must be kept stable throughout the complete memory cycle. However,
this does not provide optimum performance.

See Address timing on page 3-14 for details of thistiming.

BIGEND
Big endian configuration

Selects how the processor treats bytes in memory:
. HIGH for big-endian format
. LOW for little-endian format.

A4

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Signal and Transistor Descriptions

Table A-3 Signal descriptions (continued)

Name Type

Description

BL[3:0] IC
Byte latch control

The values on the data bus are | atched on the falling edge of MCLK
whenthese signalsare HIGH. For most designsthese signals must betied
HIGH.

BREAKPT IC
Breakpoint

A conditional request for the processor to enter debug state is made by
placing thissignal HIGH.

If the memory access at that time is an instruction fetch, the processor
enters debug state only if the instruction reaches the execution stage of
the pipeline.

If the memory accessisfor data, the processor enters debug state after the
current instruction completes execution. This allows extension of the
internal breakpoints provided by the EmbeddedI CE-RT logic.

See Behavior of the program counter in debug state on page B-31 for
details on the use of thissignal.

BUSDIS o
Bus disable

When INTEST is selected on scan chain 0, 4, or 8thisisHIGH. It can be
used to disable external logic driving onto the bidirectional data bus
during scan testing. This signal changes after the falling edge of TCK.

BUSEN IC
Data bus configuration

A static configuration signal that sel ects whether the bidirectiona data
bus (D[31:0]) or the unidirectional data busses (DIN[31:0] and
DOUT([31:0]) are used for transfer of data between the processor and
memory.

When BUSEN isLOW, D[31:0] isused; DOUT[31:0] isdrivento a
value of zero, and DIN[31:0] isignored, and must betied LOW.

When BUSEN isHIGH, DIN[31:0] and DOUT[31:0] are used; D[31:0]
isignored and must be left unconnected.

See Chapter 3 Memory Interface for detail s on the use of this signal.

COMMRX (0]
Communications channel receive

When the communi cations channel receive buffer isfull thisis HIGH.
This signal changes after the rising edge of MCLK.

See Debug Communications Channel on page 5-17 for more
information.

COMMTX (6]
Communications channel transmit

When the communications channel transmit buffer is empty thisis
HIGH. Thissignal changes after the rising edge of MCLK.

See Debug Communi cations Channel on page 5-17 for more
information.

CPA IC
Coprocessor absent

Placed LOW by the coprocessor if it is capable of performing the
operation requested by the processor.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. A-5

Signal and Transistor Descriptions

Table A-3 Signal descriptions (continued)

Name Type Description

CPB IC Placed LOW by the coprocessor when it is ready to start the operation

Coprocessor busy requested by the processor.
It is sampled by the processor when M CLK goesHIGH in each cyclein
which nCPI is LOW.

D[31:0] IC Used for data transfers between the processor and external memory.

Data bus o During read cycles input data must be valid on the falling edge of
MCLK.
During write cycles output dataremains valid until after the falling edge
of MCLK.
This busis always driven except during read cycles, irrespective of the
value of BUSEN. Consequently it must be left unconnected if using the
unidirectional data buses.
See Chapter 3 Memory Interface.

DBE IC Must be HIGH for data to appear on either the bidirectional or

Data bus enable unidirectional data output bus.
When LOW the bidirectional data bus is placed into a high impedance
state and data output is prevented on the unidirectiona data output bus.
It can be used for test purposes or in shared bus systems.

DBGACK o When the processor isin a debug state thisis HIGH.

Debug acknowledge

DBGEN IC A static configuration signal that disables the debug features of the

Debug enable processor when held LOW.
This signal must be HIGH to allow the EmbeddedI CE-RT logic to
function.

DBGRQ IC Thisisalevel-sensitiveinput, that when HIGH causesARM 7TDM I core

Debug request to enter debug state after executing the current instruction. This alows
external hardware to force the ARM7TDMI core into debug state, in
addition to the debugging features provided by the Embedded| CE-RT
logic.
See Appendix B Debug in Depth.

DBGRQI (0] Thisisthelogical OR of DBGRQ and bit 1 of the debug control register.

Internal debug request

A-6

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Signal and Transistor Descriptions

Table A-3 Signal descriptions (continued)

Name Type Description
DIN[31:0] IC Unidirectiond bus used to transfer instructions and data from the
Datainput bus memory to the processor.
Thisbusis only used when BUSEN is HIGH. If unused then it must be
tied LOW.
This busis sampled during read cycles on the faling edge of MCLK.
DOUT[31:0] (0] Unidirectional bus used to transfer data from the processor to the
Data output bus memory system.
Thisbusisonly used when BUSEN isHIGH. Otherwiseitisdrivento a
value of zero.
Duringwrite cyclesthe output databecomesvalid whileM CLK isLOW,
and remains valid until after the falling edge of MCLK.
DRIVEBS (0] Controls the multiplexors in the scan cells of an external boundary-scan
Boundary scan cell enable chain.
This must be left unconnected, if an external boundary-scan chain is not
connected.
ECAPCLK o Only used on the ARM7TDMI test chip, and must otherwise be left
EXTEST capture clock unconnected.
ECAPCLKBS (0] Used to capture the device inputs of an external boundary-scan chain
EXTEST capture clock for during EXTEST.
boundary-scan When scan chain 3 isselected, the current instruction iSEXTEST and the
TAP controller state machine isin the CAPTURE- DR state, then this
signal isapulse equal in width to TCK 2.
This must be left unconnected, if an external boundary-scan chain is not
connected.
ECLK o In normal operation, thisissimply MCLK, optionaly stretched with
External clock output nWAIT, exported from the core. When the coreis being debugged, this
isDCLK, which is generated internally from TCK.
EXTERNO IC Thisisconnected to the Embedded| CE-RT logic and allows breakpoints
External input 0 and watchpoints to be dependent on an external condition.
EXTERN1 IC Thisisconnected to the Embedded| CE-RT logic and allows breakpoints
External input 1 and watchpoints to be dependent on an external condition.
HIGHZ 0] When the HIGHZ instruction has been loaded into the TAP controller

See Appendix B Debug in Depth for details.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. A-7

Signal and Transistor Descriptions

Table A-3 Signal descriptions (continued)

Name Type Description
ICAPCLKBS (0] Thisis used to capture the device outputs in an external boundary-scan
INTEST capture clock chain during INTEST.
This must be left unconnected, if an external boundary-scan chain is not
connected.
INSTRVALID 0] Indicates that the instruction in the Execute stage of the pipeline was
Instruction valid valid and has been executed (unlessit failed its conditions codes).
IR[3:0] o Reflectsthe current instruction loaded into the TAP controller instruction
TAP controller instruction register register. These bits change on the falling edge of TCK when the state
machineisin the UPDATE-IR state.
Theinstruction encoding is described in Public instructions on
page B-10.
ISYNC IC Set thisHIGH if nIRQ and nFI Q are synchronous to the processor
Synchronous interrupts clock. Set it LOW for asynchronous interrupts.
LOCK 0] When the processor is performing alocked memory accessthisisHIGH.
Locked operation Thisis used to prevent the memory controller allowing another device to
access the memory.
It is active only during the data swap (SWP) instruction.
Thisis one of the signals controlled by APE, ALE and ABE.
MAS[1:0] (0] Used to indicate to the memory system the size of datatransfer (byte,
Memory access size halfword or word) required for both read and write cycles, become valid
before the falling edge of MCLK and remain valid until the rising edge
of MCLK during the memory cycle.
The binary values 00, 01, and 10 represent byte, halfword, and word
respectively (11 is reserved).
Thisis one of the signals controlled by APE, ALE, and ABE.
MCLK IC Thisisthemain clock for all memory accesses and processor operations.

Memory clock input

The clock speed can be reduced to allow access to dow peripherals or
memory.

Alternatively, the nWAIT can be used with a free-running M CLK to
achieve the same effect.

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Signal and Transistor Descriptions

Table A-3 Signal descriptions (continued)

Name

Type Description

nCPI
Not coprocessor instruction

(0] LOW when a coprocessor instruction is processed. The processor then
waits for a response from the coprocessor on the CPA and CPB lines.
If CPA isHIGH when MCLK rises after arequest has been initiated by
the processor, then the coprocessor handshake is aborted, and the
processor enters the undefined instruction trap.
If CPA isLOW at thistime, then the processor enters a busy-wait period
until CPB goes L OW before completing the coprocessor handshake.

nENIN
NQOT enable input

IC This must be LOW for the data bus to be driven during write cycles.

Can beused in conjunction withnENOUT to control the databus during
write cycles.

See Chapter 3 Memory Interface.

NnENOUT
Not enable output

(0] During awrite cycle, thissignal is driven LOW before the rising edge of
M CLK, and remains LOW for the entire cycle. This can be used to aid
arbitration in shared bus applications.

See Chapter 3 Memory Interface.

nENOUTI
Not enable output

(0] During a coprocessor register transfer C-cycle from the
EmbeddedI CE-RT communications channel coprocessor to the ARM
core, thissignal goes LOW. This can be used to aid arbitration in shared

bus systems.
nEXEC o Thisis HIGH when the instruction in the execution unit is not being
Not executed executed because, for example, it hasfailed its condition code check.
nFIQ IC Taking thisL OW causesthe processor to beinterrupted if the appropriate

Not fast interrupt request

enablein theprocessor isactive. Thesignal islevel-sensitive and must be
held LOW until asuitable responseisreceived from the processor. nFI Q
can be synchronous or asynchronous to M CL K, depending on the state

of ISYNC.

nHIGHZ o When the current instruction isHIGHZ thissignal isLOW. Thisisused

Not HIGHZ to place the scan cells of that scan chain in the high impedance state.
This must be left unconnected, if an external boundary-scan chain is not
connected.

nIRQ IC AsnFIQ, but with lower priority. Can be taken LOW to interrupt the

Not interrupt request

processor when the appropriate enable is active. nNIRQ can be
synchronous or asynchronous, depending on the state of | SYNC.

nM[4:0]
Not processor mode

o These are the inverse of the internal status bits indicating the current
processor mode.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. A-9

Signal and Transistor Descriptions

Table A-3 Signal descriptions (continued)

Name Type Description

nMREQ (0] When the processor requires memory access during the following cycle

Not memory raqueg thisis LOW.

nOPC o When the processor is fetching an instruction from memory thisis LOW.

Not op-code fetch Thisis one of the signals controlled by APE, ALE, and ABE.

nRESET IC Used to start the processor from a known address.

Not reset A LOW level causes the instruction being executed to terminate
abnormally.

Thissigna must be held LOW for at least two clock cycles, withnWAIT
held HIGH.

When LOW the processor performsinternal cycles with the address
incrementing from the point where reset was activated. The address
overflowsto zeroif NRESET isheld beyond the maximum addresslimit.
When HIGH for at least one clock cycle, the processor restarts from
address 0.

nRW 6] When the processor is performing aread cycle, thisis LOW.

Not read, write Thisis one of the signals controlled by APE, ALE, and ABE.

nTDOEN (0] When serial datais being driven out on TDO thisis LOW.

Not TDO enable Usually used as an output enable for aTDO pin in a packaged part.

NTRANS 0] When the processor isin User mode, thisis LOW.

Not memory trand ate It can be used ether to tell the memory management system when
address translation is turned on, or as an indicator of non-User mode
activity.

Thisis one of the signals controlled by APE, ALE, and ABE.

nTRST IC Reset signal for the boundary-scan logic. This pin must be pulsed or

Not test reset driven LOW to achieve normal device operation, in addition to the
normal devicereset, NRESET.

See Chapter 5 Debug Interface.

nWAIT IC When LOW the processor extends an access over a number of cycles of

Not wait M CLK, which is useful for accessing slow memory or peripherals.
Internally, NWAI T islogically ANDed with MCLK and must only
changewhen MCLK isLOW.

If NWAIT isnot used it must be tied HIGH.
A-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Signal and Transistor Descriptions

Table A-3 Signal descriptions (continued)

Name Type Description
PCLKBS (0] Thisis used by an externa boundary-scan chain as the update clock.
Boundary scan This must be left unconnected, if an external boundary-scan chain is not
update clock connected.
RANGEOUTO 0] When the Embedded| CE-RT watchpoint unit 0 has matched the
EmbeddedI CE-RT RANGEOUTO conditions currently present on the address, data, and control buses, then
thisisHIGH.
This signal isindependent of the state of the watchpoint enable control
bit.
RANGEOUTO changeswhen ECLK isLOW.
RANGEOUT1 o AsRANGEOUTO but corresponds to the Embeddedl CE-RT watchpoint
Embedded| CE-RT RANGEOUT1 unit 1.
RSTCLKBS 0] When either the TAP controller state machineisin the RESET state or
Boundary scan Reset Clock when nTRST is LOW, then thisis HIGH. This can be used to reset
external boundary-scan cells.
SCREGI[3:0] o These reflect the ID number of the scan chain currently selected by the
Scan chain register TAP controller. These change on the falling edge of TCK when the TAP
state machine isin the UPDATE-DR state.
SDINBS (0] This provides the serial data for an external boundary-scan chain input.
Boundary scan serial input data It changesfrom therising edge of TCK and isvalid at thefalling edge of
TCK.
SDOUTBS IC Accepts serial datafrom an external boundary-scan chain output,
Boundary scan serial output data synchronized to the rising edge of TCK.
This must be tied LOW, if an external boundary-scan chain is not
connected.
SEQ (0] When the address of the next memory cycleis closely related to that of
Sequential address the last memory access, thisis HIGH.
In ARM state the new address can be for the same word or the next. In
THUMB state, the same halfword or the next.
It can be used, in combination with the low-order address lines, to
indicate that the next cycle can use a fast memory mode (for example
DRAM page mode) or to bypass the address translation system.
SHCLKBS o Used to clock the master half of the external scan cells and follows

Boundary scan shift clock, phase
one

TCK1wheninthe SHIFT-DR state of the state machine and scan chain
3isselected. When not in the SHIFT-DR state or when scan chain 3is
not selected, this clock is LOW.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

A-11

Signal and Transistor Descriptions

Table A-3 Signal descriptions (continued)

Name Type Description

SHCLK?2BS (0] AsSHCLKBS but follows TCK 2 instead of TCK 1.

Boundary scan shift clock, phase This must be left unconnected, if an external boundary-scan chain is not

two connected.

TAPSM[3:0] 0] Thesereflect the current state of the TAP controller state machine. These

TAP controller bits change on therising edge of TCK.

state machine See Figure B-2 on page B-6.

TBE IC When LOW, D[31:0], A[31:0], LOCK, MAS[1:0], nRW, nTRANS,

Test bus enable and nOPC are set to high impedance.
Similar in effect asif both ABE and DBE had been driven LOW.
However, TBE does not have an associated scan cell and so allows
external signals to be driven high impedance during scan testing.
Under normal operating conditions TBE must be HIGH.

TBIT o When the processor is executing the THUMB instruction set, thisis
HIGH. It is LOW when executing the ARM instruction set.
This signal changesin phase two in the first execute cycle of aBX
instruction.

TCK IC Clock signd for all test circuitry. When in debug state, thisis used to
generate DCLK, TCK1, and TCK2.

TCK1 (0] HIGH when TCK isHIGH (slight phase lag due to the internal clock

TCK, phase one non-overlap).

TCK2 (0] HIGH when TCK is LOW (dlight phase lag due to the internal clock

TCK, phase two non-overlap).
It is the non-overlapping complement of TCK 1.

TDI IC Seria data for the scan chains.

TDO (0] Seria data from the scan chains.

Test data output

TMS IC Mode select for scan chains.

VDD P Provide power to the device.

Power supply

VSS P These connections are the ground reference for all signals.

Ground

A-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Appendix B
Debug in Depth

This appendix describes the debug features of the ARM7TDMI corein further detail
and includes additional information about the EmbeddedlI CE-RT logic. It contains the

following sections:

. Scan chains and the JTAG interface on page B-3

. Resetting the TAP controller on page B-7

. Instruction register on page B-9

. Public instructions on page B-10

. Test data registers on page B-15

. The ARM7TDMI core clocks on page B-23

. Determining the core and system state in debug state on page B-25
. Behavior of the program counter in debug state on page B-31
. Priorities and exceptions on page B-34

. Scan chain cell data on page B-36

. The watchpoint registers on page B-43

. Programming breakpoints on page B-48

. Programming watchpoints on page B-51

. The debug control register on page B-52

. The debug status register on page B-55

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

B-1

Debug in Depth

The abort status register on page B-57

Coupling breakpoints and watchpoints on page B-58
Embeddedl CE-RT timing on page B-60
Programming Restriction on page B-61.

B-2

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Debug in Depth

B.1 Scan chains and the JTAG interface

Three JTAG-style scan chains within the ARM7TDMI core enable debugging and
configuration of Embedded| CE-RT logic.

Support is also provided for an optional fourth scan chain. Thisisintended to be used
for an external boundary-scan chain around the pads of a packaged device. The control
signals provided for this scan chain are described in Scan chain 3 on page B-21. Two

additional scan chains exist (numbered four and eight), but these are reserved for ARM
use only.

See Table B-2 on page B-17 for asummary of scan chain number all ocation.

The following sections describe:
. Scan chain implementation
. TAP state machine on page B-5.

B.1.1 Scan chain implementation

A JTAG-style Test Access Port (TAP) controller controls the scan chains. For further
details of the JTAG specification, refer to |EEE Standard 1149.1 - 1990 Standard Test
Access Port and Boundary-Scan Architecture.

The scan chains are shown in Figure B-1 on page B-4.

Scan chains 0, 1, and 2 are described in the following sections:
. Scan chain 0 on page B-4
. Scan chain 1 on page B-4
. Scan chain 2 on page B-5.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. B-3

Debug in Depth

ARM7TDMI processor

Scan chain 0

EmbeddedICE-RT

logic ARM CPU
L] main processor
— Scan chain 2 - logic

BREAKPT

= cha/illr']—i

A

TAP controller |«

Figure B-1 ARM7TDMI core scan chain arrangements

Scan chain 0

Scan chain 0 enables access to the entire periphery of the ARM7TDMI core, including
the data bus. The scan chain functions enable inter-device testing (EXTEST) and seria
testing of the core (INTEST). The order of the scan chain, from search datain to out, is:

1. Databushits0to 31.
2. Thecore control signals.
3. Addressbushits31to 0.
4. Embeddedl CE-RT control signals.
The EmbeddedI CE-RT control signals (specifically DBGRQI) are scanned out

first.
Scan chain 1

Scan chain 1isasubset of scan chain 0 and BREAKPT. It provides serial accessto the
core data bus D[31:0] and the BREAK PT signal.

There are 33 bitsin this scan chain, the order from serial datain to serial data out, is:
1. Data bus bits 0 to 31.

B-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

2. TheBREAKPT bhit, thefirst to be shifted out.

Scan chain 2

Scan chain 2 enables access to the Embedded| CE-RT logic registers. Refer to Test data
registers on page B-15 for details.

B.1.2 TAP state machine

The processof serial test and debug i s best explained in conjunction with the JTAG state
machine. Figure B-2 on page B-6 shows the state transitions that occur in the TAP
controller.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-5

Debug in Depth

Test-Logic Reset \ 4
OxF -

tms=1

Select-IR-Scan tms=1
0x4

Select-DR-Scan \tms=1
0x7

Y
Y

0xC
tms=0 A

Exit2-DR
0x0

Update-DR
0x5

Figure B-2 Test access port controller state transitions

From |EEE Std 1149.1-1990. Copyright 1999 IEEE. All rights reserved.

B-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.2 Resetting the TAP controller

The boundary-scan (JTAG) interfaceincludes a state machine controller named the TAP
controller. To force the TAP controller into the correct state after power-up, you must
apply areset pulseto the nTRST signal:

. When the boundary-scan interface or Embedded| CE-RT isto be used, NnTRST
must be driven LOW and then HIGH again.

. When the boundary-scan interface or Embedded| CE-RT is not to be used, the
NTRST input can be tied permanently LOW.

Note
A clock on TCK is not necessary to reset the device.

ThenTRST signal:

1. Selects system mode. This means that the boundary-scan cells do not intercept
any of the signals passing between the external system and the core.

2. Selectsthe IDCODE instruction.
When the TAP controller is put into the SHIFT-DR state and TCK is pulsed, the
contents of the ID register are clocked out of TDO.

3. Setsthe TAP controller state machine to the TEST-L OGIC RESET state.

4. Setsthescan chain select register to 0x3, which selectsthe external boundary-scan
chain, if present.

Note

You must use nTRST to reset the boundary-scan interface at | east once after power up.
After thisthe TAP controller state machine can be put into the TEST-LOGIC RESET
state to subsequently reset the boundary-scan interface.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. B-7

Debug in Depth

B.3

Pullup resistors

The |IEEE 1149.1 standard impliesthat nTRST, TDI, and TM S must have internal
pullup resistors. To minimize static current draw, these resistors are not fitted to the
ARM7TDMI core. Accordingly, the four inputsto the test interface, thenTRST, TDI,
and TM Ssignal plus TCK, must all be driven to good logic levels to achieve normal
circuit operation.

B-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.4 Instruction register

The instruction register is 4 bitsin length.
Thereis no parity bit.

The fixed value b0001 is loaded into the instruction register during the CAPTURE-IR
controller state.

The least significant bit of the instruction register is scanned in and scanned out first.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-9

Debug in Depth

B.5 Public instructions

Table B-1 lists the public instructions.

Table B-1 Public instructions

Instruction Binary Hexadecimal
EXTEST b0000 0x0
SCAN_N b0010 0x2

SAMPLE/PRELOAD b0011 0x3

RESTART b0100 Ox4
CLAMP b0101 0x5
HIGHZ b0111 0x7
CLAMPZ b1001 0x9
INTEST b1100 0xC
IDCODE b1110 OxE
BYPASS b1111 OxF

In the following instruction descriptions, TDI and TM S are sampled on the rising edge
of TCK and all output transitionson TDO occur as aresult of thefalling edge of TCK.
The following sections describe:

B.5.1 EXTEST (b0000)

EXTEST (b0000)

SCAN_N (b0010) on page B-11
SAMPLE/PRELOAD (b0011) on page B-11
RESTART (b0100) on page B-11

CLAMP (b0101) on page B-12

HIGHZ (b0111) on page B-12

CLAMPZ (b1001) on page B-12

INTEST (b1100) on page B-13

IDCODE (b1110) on page B-13

BYPASS (b1111) on page B-13.

The selected scan chainis placed in test mode by the EXTEST instruction.

B-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

The EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, al of the scan
cells are placed in their test mode of operation:

. In the CAPTURE-DR state, inputs from the system logic and outputs from the
output scan cells to the system are captured by the scan cdlls.

. Inthe SHIFT-DR state, the previously captured test datais shifted out of the scan
chain using TDO, while new test datais shifted in using the TDI input. This data
is applied immediately to the system logic and system pins.

B.5.2 SCAN_N (b0010)

The SCAN_N instruction connects the scan path select register between TDI and TDO:
. In the CAPTURE-DR state, the fixed value b1000 is |oaded into the register.

. Inthe SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

. Inthe UPDATE-DR state, the scan register of the selected scan chain isconnected
between TDI and TDO and remains connected until a subseguent SCAN_N
instruction is issued.

. Onreset, scan chain 3 is selected by default.

The scan path select register is 4 bits long in thisimplementation, although no finite
length is specified. The least significant bit of the scan path select register is shifted in
and out first.

B.5.3 SAMPLE/PRELOAD (b0011)

Thisinstruction isincluded for production test only and must never be used on the scan
chains provided by the ARM7TDM I core. It can be used on user-added scan chainssuch
as boundary-scan chains.

B.5.4 RESTART (b0100)

The RESTART instruction restarts the processor on exit from debug state. The
RESTART instruction connects the bypass register between TDI and TDO. The TAP
controller behaves asif the BY PASS instruction had been loaded.

The processor exits debug state when the RUN-TEST-IDLE state is entered.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-11

Debug in Depth

B.5.5 CLAMP (b0101)

Thisinstruction connects a 1 bit shift register, the BY PASS register, between TDI and
TDO. When the CLAMP instruction is loaded into the instruction register, the state of
all the scan cell output signalsis defined by the values previously loaded into the
currently loaded scan chain. Thisinstruction must only be used when scan chain O isthe
currently selected scan chain:

. Inthe CAPTURE-DR state, a 0 is captured by the bypass register.

. Inthe SHIFT-DR state, test datais shifted into the bypassregister using TDI and
out using TDO after adelay of one TCK cycle. The first bit shifted out isa 0.

. In the UPDATE-DR state the bypass register is not affected.

B.5.6 HIGHZ (b0111)

Thisinstruction connects a 1 bit shift register, the BY PASS register, between TDI and
TDO. When the HIGHZ instruction is loaded into the instruction register, the Address
bus, A[31:0], the data bus, D[31:0], nRW, nOPC, LOCK, MAS[1:0], and nTRANS
are al driven to the high impedance state and the external HIGHZ signal is driven
HIGH. Thisisasif the signal TBE had been driven LOW:

. Inthe CAPTURE-DR state, a 0 is captured by the bypass register.

. Inthe SHIFT-DR state, test datais shifted into the bypassregister using TDI and
out using TDO after adelay of one TCK cycle. The first bit shifted out isa 0.

. In the UPDATE-DR state, the bypass register is not affected.

B.5.7 CLAMPZ (b1001)

Thisinstruction connects a 1 bit shift register, the BY PASS register, between TDI and
TDO.

When the CLAMPZ instruction isloaded into the instruction register, al the tristate
outputs are placed in their inactive state, but the data supplied to the scan cell outputsis
derived from the scan cells. The purpose of thisinstruction is to ensure that, during
production test, each output can be disabled when its datavalue is either O or 1:

. Inthe CAPTURE-DR state, a 0 is captured by the bypass register.

. Inthe SHIFT-DR state, test datais shifted into the bypassregister using TDI and
out using TDO after adelay of one TCK cycle. The first bit shifted out isa 0.

. In the UPDATE-DR state, the bypass register is not affected.

B-12

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

B.5.8 INTEST (b1100)

Debug in Depth

The INTEST instruction places the selected scan chain in test mode:

The INTEST instruction connects the selected scan chain between TDI and TDO.

When the INTEST instruction is loaded into the instruction register, all the scan
cells are placed in their test mode of operation.

In the CAPTURE-DR state, the value of the data applied from the core logic to
the output scan cells and the value of the data applied from the system logic to the
input scan cellsis captured.

Inthe SHIFT-DR state, the previoudly-captured test datais shifted out of the scan
chain through the TDO pin, while new test datais shifted in through the TDI pin.

Single-step operation of the coreis possible using the INTEST instruction.

B.5.9 IDCODE (b1110)

The IDCODE instruction connects the device identification code register or ID register
between TDI and TDO. Theregister isa 32-bit register that enabl es the manufacturer,
part number, and version of acomponent to be read through the TAP. See ARM7TDMI
core device | Dentification (ID) code register on page B-15 for details of the ID register
format.

When the IDCODE instruction is loaded into the instruction register, al the scan cells
are placed in their norma system mode of operation:

B.5.10 BYPASS (b1111)

Inthe CAPTURE-DR state, the device identification codeis captured by the ID
register.

In the SHIFT-DR state, the previously captured device identification codeis
shifted out of the ID register through the TDO pin, while datais shifted into the
ID register through the TDI pin.

In the UPDATE-DR state, the ID register is unaffected.

The BY PASS instruction connects a 1-bit shift register, the bypass register, between
TDI and TDO.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-13

Debug in Depth

When the BY PASS instruction is loaded into the instruction register, al the scan cells
assume their normal system mode of operation. The BY PASS instruction has no effect
on the system pins:

. Inthe CAPTURE-DR state, a 0 is captured the bypass register.

. In the SHIFT-DR state, test data is shifted into the bypass register through TDI
and shifted out through TDO after adelay of one TCK cycle. Thefirst bit to shift
outisaoO.

. In the UPDATE-DR state, the bypass register is not affected.

All unused instruction codes default to the BY PASS instruction.

Note

BY PASS does not enabl e the processor to exit debug state or synchronizeto MCLK for
a system-speed access whilein debug state. You must use RESTART to achieve this.

B-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.6 Test dataregisters

There are seven test data registers that can connect between TDI and TDO:
. Bypass register

. ARM7TDMI core device IDentification (1D) code register

. Instruction register on page B-16

. Scan path select register on page B-16

. Scan chains 0, 1, 2, and 3 on page B-18.

In the following test data register descriptions, datais shifted during every TCK cycle.

B.6.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path
between TDI and TDO.

Length 1 bit.

Operatingmode When the BY PASS instruction is the current instruction in the
instruction register, serial dataistransferred from TDI to TDO in
the SHIFT-DR state with adelay of one TCK cycle. Thereisno
parallel output from the bypass register.

A Oisloaded from the parallel input of the bypass register in the
CAPTURE-DR state.

B.6.2 ARM7TDMI core device IDentification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.
Length 32 hits. The format of the register is as shown in Figure B-3.
31 28 27 12 1 10

o
-
o
o
o
o
o
o
o
-
-
-
o
o
o
o
o
o
o
o
-
-
-
-
o
o
o
o
-
-
-
-

v

A

Version Part number Manufacturer identity

Figure B-3 ID code register format

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-15

Debug in Depth

Figure B-3 on page B-15 shows the default version and part number. If necessary,
contact your supplier for the correct device identification code.

Operating mode

B.6.3 Instruction register
Purpose
Length

Operating mode

B.6.4 Scan path select register
Purpose
Length

Operating mode

When the IDCODE instruction is current, the ID register is
selected as the serial path between TDI and TDO. Thereisno
paralel output from the ID register.

The 32-bit deviceidentification code isloaded into the I D register
from its parallel inputs during the CAPTURE-DR state.

Theleast significant bit of the register is scanned out first.

Changes the current TAP instruction.
4 hits.

In the SHIFT-IR state, the instruction register is selected as the
serial path between TDI and TDO.

During the UPDATE-IR state, the vaue in theinstruction register
becomes the current instruction.

During the CAPTURE-IR state, b0001 isloaded into this register.
This value is shifted out during SHIFT-IR. On reset, IDCODE
becomes the current instruction.

Theleast significant bit of the register is scanned in and out first.

Changes the current active scan chain.
4 hits.

SCAN_N asthe current instruction in the SHIFT-DR state selects
the scan path select register asthe seria path between TDI and
TDO.

During the CAPTURE-DR state, b1000 is loaded into this
register. This valueisloaded out during SHIFT-DR, while a new
valueis loaded in.

During the UPDATE-DR state, the value in the register selects a
scan chain to become the currently active scan chain. All further
instructions, such as INTEST, then apply to that scan chain. The
currently selected scan chain changes only when a SCAN_N
instruction is executed, or when areset occurs. On reset, scan
chain 0 is selected as the active scan chain.

B-16

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Debug in Depth

Theleast significant bit of the register is scanned in or out first.

The number of the currently selected scan chain is reflected on the SCREG][3:0]
outputs. The TAP controller can be used to drive external scan chains in addition to
those within the ARM7TDMI macrocell. The external scan chain must be assigned a
number and control signals for it can be derived from SCREG[3:0], IR[3:0],
TAPSM[3:0], TCK1, and TCK 2. Thelist of scan chain numbersallocated by ARM are
shown in Table B-2. An external scan chain can take any other number. The serial data
stream to be applied to the external scan chain is made present on SDINBS, the serial
data back from the scan chain must be presented to the TAP controller on the
SDOUTBS input. The scan chain present between SDINBS and SDOUTBS s
connected between TDI and TDO whenever scan chain 3 is selected, or when any of
the unassigned scan chain numbers is selected. If there is more than one external scan
chain, a multiplexor must be built externally to apply the desired scan chain output to
SDOUTBS. The multiplexor can be controlled by decoding SCREG[3:0].

Table B-2 lists the scan chain number allocation.

Table B-2 Scan chain number allocation

:s;nb(;lain Function

0 Macrocell scan test

1 Debug

2 Embedded! CE-RT logic programming
3a External boundary-scan

4 Reserved

8 Reserved

a. To beimplemented by ASIC designer.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. B-17

Debug in Depth

B.6.5 Scanchains O, 1, 2, and 3

These enable serial accessto the core logic and to the Embedded| CE-RT logic for
programming purposes. They are described in detail in the following sections.

Scan chain 0 and 1
Purpose Enables access to the processor core for test and debug.

Length Scan chain 0: 113 hits.
Scan chain 1: 33 bits.

Each scan chain cell isfairly simple and consists of a serial register and a multiplexor
as shown in Figure B-4 on page B-19. The scan cells perform two basic functions:

. CAPTURE
. SHIFT.

For input cells, the capture stage invol ves copying the value of the input to the coreinto
the serial shift register. During shift, this value is output serially. The value applied to

the core from aninput cell is either the system input or the contents of the serid register,
and thisis controlled by the multiplexor.

For output cells (see Figure B-4 on page B-19), the capture stage involves placing the
output value of acoreinto the serial shift register. During shift, this value is output
serially. The va ue applied to the system from an output cell is either the core output, or
the contents of the serial register.

B-18

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Serial data out
A

Data from core

\ 4

CAPTURE clock .| Shift

Latch j

| register
SHIFT clock

\ 4

f

Serial data in

!

Update clock

Debug in Depth

To system pin

Figure B-4 Output scan cell

All the control signals for the scan cells are generated internally by the TAP controller.
The action of the TAP controller is determined by the current instruction and the state

of the TAP state machine.

You use the TAP controller instructions to select one of the following basic modes of

operation of the scan chains:

INTEST mode The coreis tested internally. The data serially scanned inis
applied to the core and the resulting outputs are captured in the
output cells and scanned out.

EXTEST mode Datais scanned onto the outputs of the core and applied to the
external system. System input data is captured in the input cells
and then shifted out.

SYSTEM mode Thescan cellsareidle. System datais applied to inputs and core
outputs are applied to the system.

Scan chain 0

Scan chain 0 isintended primarily for inter-device testing, EXTEST, and testing the
core, INTEST. Scan chain 0 is selected using the SCAN_N instruction as described at

SCAN_N (b0010) on page B-11.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

B-19

Debug in Depth

INTEST enables serial testing of the core. The TAP controller must be placed in
INTEST mode after scan chain O has been selected:

. During CAPTURE-DR, the current outputs from the corelogic are captured in the
output cells.

. During SHIFT-DR, this captured datais shifted out while anew serial test pattern
is scanned in, therefore applying known stimuli to the inputs.

. During RUN-TEST-IDLE, the core is clocked. Usually, the TAP controller only
spendsone cyclein RUN-TEST-IDLE. Thewhole operation can then be repeated.

For a description of the core clocks during test and debug, see The ARM7TDMI core
clocks on page B-23.

EXTEST enables inter-device testing, useful for verifying the connections between
devices on acircuit board. The TAP controller must be placed in EXTEST mode after
scan chain 0 has been selected:

. During CAPTURE-DR, the current inputs to the core logic from the system are
captured in the input cells.

. During SHIFT-DR, this captured datais shifted out while anew serial test pattern
is scanned in, thus applying known values on the outputs of the core.

. During UPDATE-DR, the value shifted into the scan cells appears on the outputs.

Note
During RUN-TEST-IDLE, the core is not clocked.

The operation can then be repeated.

Scan chain 1

The primary usefor scan chain 1 isfor debugging, although it can be used for EXTEST
on thedatabus. Scan chain 1 is selected using the SCAN_N TAP controller instruction.
Debugging is similar to INTEST and the procedure described above for scan chain 0
must be followed.

Scan chain 1is 33 bitslong, 32 bits for the data value, plus the scan cell on the
BREAKPT core input. This 33rd bit serves four purposes:

1. Under normal INTEST test conditions, it enables a known value to be scanned
into the BREAK PT input.

B-20

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

2. During EXTEST test conditions, the value applied to the BREAK PT input from
the system can be captured.

3. Whiledebugging, the value placed in the 33rd bit determinesif the ARM7TDMI
core synchronizes back to system speed before executing the instruction. See
System speed access on page B-33 for further details.

4. After the ARM7TDMI core has entered debug state, the first time this bit is
captured and scanned out, its value tells the debugger if the core entered debug
state due to a breakpoint (bit 33 clear) or awatchpoint (bit 33 set).

Scan chain 2

Purpose Enables the Embeddedl CE-RT macrocell registersto be accessed. The
order of the scan chain, from TDI to TDO is:

1. Read/write, register address bits4 to 0.
2. Datavauebits31to 0.

See Embedded| CE-RT block diagram on page B-44.
Length 38 hits.

To accessthisserial register, scan chain 2 must first be selected using the SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

. During CAPTURE-DR, no action is taken.

. During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36
specify the address of the Embedded| CE-RT logic register to be accessed.

. During UPDATE-DR, thisregister iseither read or written depending on the state
of hit 37, asfollows:
Bit 37 set Register is written.

Bit 37 cleared Register isread.

Scan chain 3

Purpose Enablesthe ARM7TDMI core to control an external boundary-scan
chain.

Length User defined.

Scan chain 3 control signals are provided so that an optional external boundary-scan
chain can be controlled through the ARM7TDMI core. Typically, thisisused for ascan
chain around the pad ring of a packaged device.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-21

Debug in Depth

The following control signals are provided which are generated only when scan chain
3 has been selected. These outputs are inactive at all other times:

DRIVEBS Thisisusedto switch the scan cells from system modeto test mode. This
signal is asserted whenever either the INTEST, EXTEST, CLAMP, or
CLAMPZ instruction is selected.

PCLKBS Thisisan update clock, generated in the UPDATE-DR state. Typically
thevalue scanned into achainistransferred to the cell output ontherising
edge of thissignal.

ICAPCLKBS, ECAPCLKBS

These are capture clocks used to sample data into the scan cells during
INTEST and EXTEST respectively. These clocks are generated in the
CAPTURE-DR state.

SHCLKBS, SHCLK2BS

These are non-overlapping clocks generated in the SHIFT-DR state used
to clock the master and slave element of the scan cell srespectively. When
the state machine is not in the SHIFT-DR state, both these clocks are
LOW.

The following scan chain control signals can also be used for scan chain 3:

NHIGHZ Thissignal can be used to drive the outputs of the scan cellsto the HIGH
impedance state. Thissignal isdriven LOW when the HIGHZ instruction
isloaded into the instruction register and HIGH at all other times.

RSTCLKBS Thissignal is active when the TAP controller state machineisin the
RESET-TEST LOGIC state. It can be used to reset any additional scan
cells.

In addition to these control outputs, SDINBS output and SDOUTBS input are also
provided. When an external scan chainisin use, SDOUTBS must be connected to the
serial dataoutput of the external scan chain and SDINBS must be connected to the serial
datainput of the scan chain.

B-22

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.7 The ARM7TDMI core clocks

The ARM7TDMI core has two clocks:
. the memory clock, MCLK
. an internally TCK generated clock, DCLK (see Clocks on page 5-3).

During normal operation, thecoreisclocked by MCLK and internal logic holdsDCL K
LOW.

When the ARM7TDMI coreisin debug state, the core is clocked by DCLK under
control of the TAP state machineand M CL K can free-run. The selected clock is output
onthesigna ECLK for use by the external system.

Note
NWAIT must be HIGH in debug state.

In monitor mode, the core continues to be clocked by MCLK, and DCLK is not used.

B.7.1 Clock switch during debug

When the ARM7TDMI core enters halt mode, it must switch from MCLK to DCLK.
Thisishandled automatically by logicinthe ARM7TDMI core. On entry to debug state,
the core asserts DBGACK in the HIGH phase of MCLK . The switch between the two
clocks occurs on the next falling edge of MCLK. Thisis shown in Figure B-5.

MCLK

DBGACK v/

DCLK o —
Fo T\) g .
\ Multiplexer

switching point

Figure B-5 Clock switching on entry to debug state

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-23

Debug in Depth

The ARM7TDMI coreisforced to use DCLK as the primary clock until debugging is
complete. On exit from debug, the core must be synchronized back to MCLK as
follows:

1. Thefinal instruction of the debug sequence must be shifted into the data bus scan
chain and clocked in by asserting DCLK.

2. RESTART must be clocked into the TAP instruction register.

The ARM7TDMI core automatically resynchronizesto MCLK and starts fetching
instructions from memory at MCLK speed.

Refer to Exit from debug state on page B-28.

Note
In monitor mode, the core continues to be clocked by MCLK, and DCLK is not used.

B.7.2 Clock switch during test

When under serial test conditions, that iswhen test patterns are being applied to the
ARMT7TM core through the JTAG interface, the ARM7TDMI core must be clocked
using DCLK. Entry into test is less automatic than debug and some care must be taken.
On the way into test, M CLK must be held LOW. The TAP controller can nhow be used
to seridly test the ARM7TDMI core. If scan chain 0 and INTEST are selected, DCLK
isgenerated while the state machineisin the RUN-TEST-IDLE state. During EXTEST,
DCLK is not generated.

On exit from test, RESTART must be selected as the TAP controller instruction. When
thisis done, MCLK can be enabled to resume.

Note

After INTEST testing, you must ensure that the coreisin a sensible state before
switching back to standard operating mode. The safest ways to do thisare as follows:
. select RESTART and then cause a system reset

. insert MOV PC, #0 into the instruction pipeline.

B-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.8 Determining the core and system state in debug state

When the ARM7TDMI coreisin debug state, you examine the core and system state
by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determineif the
processor entered debug from Thumb state or ARM state, by examining bit 4 of the
Embedded| CE-RT debug status register. When bit 4 isHIGH, the core has entered
debug from Thumb state, when bit 4 is LOW, the core has entered debug entered from
ARM state.

B.8.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest course of
actionisfor the debugger to force the core back into ARM state. The debugger can then
repeat the same sequence of instructions to determine the processor state.

To force the processor into ARM state while in debug, execute the following sequence
of Thumb instructions on the core:

STR RO, [RO]; Save RO before use
MOV R@, PC ; Copy PC into RO

STR RO, [RO]; Now save the PC in RO
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

—— Note

Because all Thumb instructions are only 16 bits long, the simplest course of action,
when shifting scan chain 1, is to repeat the instruction. For example, the encoding for
BX R0 iS0x4700, SO when 0x47004700 shiftsinto scan chain 1, the debugger does not have
to keep track of the half of the bus on which the processor expects to read the data.

You can use the sequences of ARM instructions in Example B-1 and Example B-2 on
page B-26 to determine the state of the processor.

With the processor in the ARM state, the instruction to execute is shown in
Example B-1.

Example B-1 Instruction to determine core state

STM RO, {RO-R15}

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-25

Debug in Depth

Theinstruction in Example B-1 on page B-25 causes the contents of the registersto
appear on the data bus. You can then sample and shift out these values.

Note

The use of ro as the base register for the STM is only for illustration and you can use
any register.

After you have determined the values in the current bank of registers, you might want
to access the banked registers. To do this, you must change mode. Typically, amode
change can occur only if the coreisalready in aprivileged mode. However, whilein
debug state, a mode change from one mode into any other mode can occur. The
debugger must restore the original mode before exiting debug state.

For example, if the debugger has been requested to return the state of the User mode
registers and FIQ mode registers and debug state was entered in Supervisor mode, the
instruction sequence can be as listed in Example B-2.

Example B-2 Determining the state of the User and FIQ mode registers

STM RO, {RO-R15}; Save current registers

MRS RO, CPSR

STR RO, RO; Save CPSR to determine current mode
BIC RO, Ox1F; Clear mode bits

ORR RO, 0x10; Select user mode

MSR CPSR, RO; Enter USER mode

STM RO, {R13,R14}; Save register not previously visible
ORR RO, 0x01; Select FIQ mode

MSR CPSR, RO; Enter FIQ mode

STM RO, {R8-R14}; Save banked FIQ registers

All the instructions shown in Example B-2 execute at debug speed. Debug speed is
much slower than system speed. This is because between each core clock cycle, 33
clock cycles are required to shift in an instruction or shift out data. Executing
instructions this slowly is acceptable for accessing the core state because the
ARM7TDMI coreisfully static. However, you cannot use this method for determining
the state of therest of the system.

Whilein debug state, only the following instructions can be scanned into the instruction
pipeline for execution:

. data processing operations
. load, store, load multiple, and store multiple instructions
. MSR and MRS.

B-26

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.8.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur synchronously to it. The ARM7TDMI core must be forced to
synchronize back to system speed. Thisis controlled by bit 33 (BREAKPT) of scan
chain 1 (see Figure B-1 on page B-4).

Any instruction can be placed in scan chain 1, and its execution speed depends on the
state of bit 33 asfollows:

Bit 33 clear Instructions are executed at debug speed.

Bit 33 set Instructions are executed at system speed, with the exception of
the instruction that is executing when the state of bit 33 is
changed.

After asystem-speed instruction has been scanned into the data bus and clocked into the

pipeline, the RESTART instruction must be loaded into the TAP controller. This causes

the ARM7TDMI core to behave as follows:

1. The ARM7TDMI core automatically synchronizes back to M CLK, the system
clock.

2. It executestheinstruction at system speed.

3. Itre-enters debug state.

4. It switchesitself back to theinternaly-generated DCLK.

When theinstruction has completed, DBGACK isHIGH and the coreis switched back
to DCLK. At thispoint, INTEST can be selected in the TAP controller and debugging
can resume.

To determine that a system-speed instruction has completed, the debugger must look at
both DBGACK and nMREQ. To access memory, the ARM7TDMI core drives
NMREQ LOW, after it has synchronized back to system speed. This transition is used
by the memory controller to arbitrate if the ARM7TDMI core can have the busin the
next cycle. If the busis not available, the core can haveits clock stalled indefinitely. The
only way to tell that the memory access has completed isto examine the state of both
nMREQ and DBGACK . When both are HIGH, the access has completed. Usually, the
debugger uses the EmbeddedI CE-RT macrocell to control debugging. By reading the
Embeddedl CE-RT macrocell status register, the state of nMREQ and DBGACK can
be determined.

The debug host can determine the system memory state using:
. system-speed load multiple instructions
. debug-speed store multiple instructions.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-27

Debug in Depth

When the core returnsto debug state after a system-speed access, bit 33 of scan chain 1
isdriven HIGH. This gives the debugger information about why the core entered debug
state the first time this scan chain is read.

Restrictions on setting BREAKPT

The instruction types that can be executed with bit 33 of scan chain 1 (BREAKPT) set
are:

. load instructions
. store instructions
. load multiple instructions

. store multiple instructions.

B.8.3 Exit from debug state

The following sequence is performed on leaving debug state:
1. Theinternal state of the ARM7TDMI core is restored.
2. A branch isgenerated to the next instruction to be executed.

A branch instruction must be loaded into the pipeline. See Behavior of the
programcounter in debug state on page B-31 for adescription of how to calculate
the branch.

3. The ARM7TDMI core synchronizes back to MCLK.

Bit 33 of scan chain 1 is used to force the ARM7TDMI core to resynchronize back to
MCLK, asfollows:

1. The penultimate instruction of the debug sequence is scanned in with bit 33 set
HIGH.

2. Thefina instruction of the debug sequenceis the branch and thisis scanned in
with bit 33 LOW.

3. Thecoreisclocked to load the branch into the pipeline.
4. The RESTART instruction is selected in the TAP controller.

5. Whenthe state machine entersthe RUN-TEST-IDLE state, the scan chain reverts
back to system mode and clock resynchronization to MCLK occursin the core.

The ARM7TDMI core resumes normal operation, fetching instructions from memory.

The delay, until the state machine isin the RUN-TEST-IDLE state, enables conditions
tobe set up in other devicesin amultiprocessor system without taking immediate effect.
Then, when the RUN-TEST-IDLE state is entered, al processors resume operation
simultaneously.

B-28

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

The function of DBGACK isto tell the rest of the system when the core isin debug
state. It isused to:

. inhibit peripheral s such as watchdog timers that have real time characteristics
. mask out memory accesses that are caused by the debugging process.

When the core enters debug state after abreakpoint, theinstruction pipeline containsthe
breakpointed instruction plustwo other instructionsthat have been prefetched. On entry
to debug state, the pipelineisflushed, so on exit from debug state, the pipeline must be
refilled to its previous state. The transition into and out of debug state causes extra
memory accesses. You can use DBGACK to inhibit any system peripheral that is
sensitive to the number of memory accesses performed, as shown in Example B-3.

Example B-3 Using DBGACK to mask out memory accesses

Consider a peripheral that counts the number of memory cycles. This cycle counter
must return the same count whether a program is run with or without debugging.
Figure B-6 shows the behavior of the core on exit from debug state.

ws 1T 1]

|
| |
|

Internal cycles

nMREQ
SEQ

A[31:0]

D[31:0]

DBGACK

Figure B-6 Debug exit sequence

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. B-29

Debug in Depth

As shown in Figure 5-3 on page 5-8, the final memory access occursin the cycle after
DBGACK goes HIGH. Thisisthe point at which the cycle counter must be disabled.
Figure B-6 on page B-29 shows that the first memory access that has not been counted
before occursin the cycle after DBGACK goes LOW, so thisiswhen the counter must
be re-enabled.

Note

When a system-speed access from debug state occurs, the core temporarily drops out of
debug state, so DBGACK might go LOW. If there are peripherasthat are sensitive to
the number of memory accesses, they must be forced to behave as though the coreis
till in debug state. By programming the Embeddedl CE-RT macrocell control register,
DBGACK can be forced HIGH.

B-30

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.9 Behavior of the program counter in debug state

The debugger must keep track of what happens to the program counter, so that the
ARM7TDMI core can beforced to branch back to the place at which program flow was
interrupted by debug. Program flow can be interrupted by any of the following:

. Software breakpoints

. Watchpoints on page B-32

. Watchpoint with another exception on page B-32
. Debug request on page B-33

. System speed access on page B-33.

B.9.1 Software breakpoints

Entry into debug state from abreakpoint advancesthe PC by four addresses or 16 bytes.
Each instruction executed in debug state advances the PC by one address or four bytes.

The usual way to exit from debug state after a breakpoint is to remove the breakpoint
and branch back to the previously-breakpointed address.

For example, if the ARM7TDMI core entered debug state from a breakpoint set on a
given address and two debug-speed instructions were executed, abranch of minus seven
addresses must occur:

. four for debug entry

. two for the instructions

. one for the final branch.

The following sequence shows the data scanned into scan chain 1, most significant bit
first. The value of thefirst digit goesto the BREAKPT bit and then theinstruction data
into the remainder of scan chain 1:

0 E0802000; ADD R2, RO, RO
1 E1826001; ORR R6, R2, R1
0 EAFFFFF9; B-7, two’s complement, seven instructions backwards

After the ARM7TDMI core enters debug state, it must execute a minimum of two
instructions before the branch, although these can both be NOPs (Mov Ro, R@). For small
branches, you can replace the final branch with a subtract, with the PC as the
destination. In the above example, this could be:

SUB PC, PC, #28

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-31

Debug in Depth

B.9.2

B.9.3

Watchpoints

The return to program execution after entry to debug state from awatchpoint isdonein
the same way as the procedure described in Software breakpoints on page B-31.

Debug entry adds four addresses to the PC and every instruction adds one address. The
difference from breakpoint operation is that the instruction that caused the watchpoint
has executed and the program must return to the next instruction.

Watchpoint with another exception

If awatchpointed access simultaneously causes a Data Abort, the ARM7TDMI core
enters debug state in abort mode. Entry into debug is prevented until the core changes
into abort mode and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a
watchpointed memory access. The ARM7TDMI core enters debug state in the mode of
the exception. The debugger must check to seeif an exception has occurred by
examining the current and previous mode, in the CPSR and SPSR, and the value of the
PC. When an exception has taken place, you must give the user the choice of servicing
the exception before debugging.

Entry to debug state when an exception has occurred causes the PC to be incremented
by three instructions rather than four and this must be considered in the return branch
calculation when exiting debug state. For example, suppose that an abort occurs on a
watchpointed access and ten instructions have been executed to determine this
eventuality. You can use the following sequence to return to program execution:

0 E1A00000; MOV RO, RO
1 E1A00000; MOV R@, RO
0 EAFFFFFO; B -16

This code forces a branch back to the abort vector, causing the instruction at that
location to be refetched and executed.

Note

After the abort service routine, the instruction that caused the abort and watchpoint is
refetched and executed. This triggers the watchpoint again and the ARM7TDMI core
re-enters debug state.

B-32

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.9.4 Debug request

Entry into debug state through a debug request is similar to a breakpoint. However,
unlike a breakpoint, the last instruction has completed execution and so must not be
refetched on exit from debug state. You can assumethat entry to debug state adds three
addresses to the PC and every instruction executed in debug state adds one address.

For example, suppose that you have invoked a debug request and decided to return to
program execution straight away. You can use the following sequence:

0 E1A00000; MOV RO, RO
1 E1AG0000; MOV RO, RO
0 EAFFFFFA; B -6

This code restores the PC and restarts the program from the next instruction.

B.9.5 System speed access

When a system-speed access is performed during debug state, the value of the PC
increases by three addresses. System speed instructions access the memory system and
so it ispossible for abortsto take place. If an abort occurs during a system-speed
memory access, the ARM7TDMI core enters abort mode before returning to debug
state.

Thisis similar to an aborted watchpoint, but the problem is much harder to fix because
the abort was not caused by an instruction in the main program and so the PC does not
point to the instruction that caused the abort. An abort handler usually looks at the PC
to determinetheinstruction that caused the abort and al so the abort address. In this case,
the value of the PC isinvalid, but because the debugger can determine which location
was being accessed, the debugger can be written to help the abort handler fix the
memory system.

B.9.6 Summary of return address calculations

The calculation of the branch return address is as foll ows:

. for normal breakpoint and watchpoint, the branch is:
- (4+N+3S)

. for entry through debug request (DBGRQ) or watchpoint with exception, the
branch is:
- (34N+3S)

where N isthe number of debug-speed instructions executed, including thefinal branch,
and S isthe number of system-speed instructions executed.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-33

Debug in Depth

B.10 Priorities and exceptions

When a breakpoint or a debug request occurs, the normal flow of the program is
interrupted. Debug can be treated as another type of exception. The interaction of the
debugger with other exceptions is described in Behavior of the program counter in
debug state on page B-31. This section covers the following priorities:

. Breakpoint with Prefetch Abort

. Interrupts

. Data Aborts on page B-35.

B.10.1 Breakpoint with Prefetch Abort

B.10.2

Interrupts

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken and
the breakpoint is disregarded. Usually, Prefetch Aborts occur when, for example, an
access is made to avirtual address that does not physically exist and the returned data
isthereforeinvalid. In such acase, the normal action of the operating system isto swap
in the page of memory and to return to the previously-invalid address. Thistime, when
the instruction is fetched and providing the breakpoint is activated, it can be
data-dependent, the ARM7TDMI core enters debug state.

The Prefetch Abort, therefore, takes higher priority than the breakpoint.

When the ARM7TDMI core enters halt debug state, interrupts are automatically
disabled.

If aninterrupt is pending during the instruction prior to entering debug state, the
ARM7TDMI core enters debug state in the mode of the interrupt. On entry to debug
state, the debugger cannot assume that the ARM7TDMI core isin the mode expected
by the user program. The debugger must check the PC, the CPSR, and the SPSR to
accurately determine the reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM 7TDMI core
does remember that an interrupt has occurred.

If bit 4, monitor mode enable, of the Debug control register isset, FIQs remain enabled.
An entry to the abort exception routine disables IRQs, so in monitor mode the abort
exception routine must re-enable |RQs before they can be recognized and serviced.

B-34

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.10.3 Data Aborts

When a Data Abort occurs on a watchpointed access, the ARM7TDMI core enters
debug state in abort mode. The watchpoint, therefore, has higher priority than the abort,
but the ARM7TDMI core remembers that the abort happened.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. B-35

Debug in Depth

B.11 Scan chain cell data

This section provides data for:
. Scan chain O cells
. Scan chain 1 cells on page B-41.
B.11.1 Scan chain O cells
The ARM7TDMI core provides data for scan chain O cells aslisted in Table B-3.

Table B-3 Scan chain 0 cells

Number Signal Type

1 D[0] Input/output
2 D[1] I nput/output
3 D[2] Input/output
4 D[3] Input/output
5 D[4] Input/output
6 D[5] Input/output
7 D[6] Input/output
8 D[7] Input/output
9 D[8] Input/output
10 D[9] Input/output
11 D[10] Input/output
12 D[11] Input/output
13 D[12] Input/output
14 D[13] Input/output
15 D[14] Input/output
16 D[15] Input/output
17 D[16] Input/output
18 D[17] Input/output
19 D[18] Input/output

B-36 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

Table B-3 Scan chain 0 cells (continued)

Number Signal Type

20 D[19] Input/output
21 D[20] Input/output
22 D[21] Input/output
23 D[22] Input/output
24 D[23] Input/output
25 D[24] Input/output
26 D[25] Input/output
27 D[26] Input/output
28 D[27] Input/output
29 D[28] Input/output
30 D[29] Input/output
31 D[30] Input/output
32 D[31] Input/output
33 NnENIN Input

34 NnENOUT Output

35 LOCK Output

36 BIGEND Input

37 DBE Input

38 MAS[0] Output

49 MAS[1] Output

40 BL[O] Input

41 BL[1] Input

a2 BL[2] Input

43 BL[3] Input

a4 nRW Output

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. B-37

Debug in Depth

Table B-3 Scan chain 0 cells (continued)

Number Signal Type
45 nFlQ Input
46 nIRQ Input
47 NnRESET Input
48 ISYNC Input
49 ABORT Input
50 nOPC Output
51 nCPI Output
52 nMREQ Output
53 SEQ Output
54 nTRANS Output
55 nM[4] Output
56 nM[3] Output
57 nM[2] Output
58 nM[1] Output
59 nM[0] Output
60 nEXEC Output
61 INSTRVALID Output
62 ALE Input
63 ABE Input
64 APE Input
65 TBIT Output
66 NnWAIT Input
67 A[31] Output
68 A[30] Output
69 A[29] Output

B-38

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

Debug in Depth

Table B-3 Scan chain 0 cells (continued)

Number Signal Type

70 A[28] Output
71 A[27] Output
72 A[26] Output
73 A[25] Output
74 A[24] Output
75 A[23] Output
76 A[22] Output
77 Al21] Output
78 A[20] Output
79 A[19] Output
80 A[18] Output
81 A[17] Output
82 A[16] Output
83 A[15] Output
84 A[14] Output
85 A[13] Output
86 A[12] Output
87 A[11] Output
88 A[10] Output
89 A[9] Output
90 A[8] Output
91 A[7] Output
92 A[6] Output
93 A[5] Output
94 Al4] Output

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. B-39

Debug in Depth

Table B-3 Scan chain 0 cells (continued)

Number Signal Type
95 A[3] Output
96 Al2] Output
97 Al1] Output
98 A[Q] Output
99 DBGRQ Input
100 DBGEN Input
101 CPA Input
102 CPB Input
103 BUSEN Input
104 EXTERNO Input
105 EXTERN1 Input
106 BREAKPT Input
107 DBGACK Output
108 RANGEOUTO Output
109 RANGEOUT1 Output
110 nENOUT1 Output
111 COMMTX Output
112 COMMRX Output
113 DBGRQI Output

B-40 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.11.2 Scan chain 1 cells
The ARM7TDMI core provides data for scan chain 1 cells as listed in Table B-4.

Table B-4 Scan chain 1 cells

Number Signal Type

1 D[0] Input/output
2 D[1] Input/output
3 D[2] Input/output
4 D[3] Input/output
5 D[4] Input/output
6 D[5] Input/output
7 D[6] Input/output
8 D[7] Input/output
9 D[8] Input/output
10 D[9] Input/output
11 D[10] Input/output
12 D[11] Input/output
13 D[12] Input/output
14 D[13] Input/output
15 D[14] Input/output
16 D[15] Input/output
17 D[16] Input/output
18 D[17] Input/output
19 D[18] Input/output
20 D[19] Input/output
21 D[20] Input/output
22 D[21] Input/output
23 D[22] Input/output

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. B-41

Debug in Depth

Table B-4 Scan chain 1 cells (continued)

Number Signal Type

24 D[23] Input/output
25 D[24] Input/output
26 D[25] Input/output
27 D[26] Input/output
28 D[27] Input/output
29 D[28] Input/output
30 D[29] Input/output
31 D[30] Input/output
32 D[31] Input/output
33 BREAKPT Input

B-42 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

B.12 The watchpoint registers

Debug in Depth

The two watchpoint units, known as Watchpoint 0 and Watchpoint 1, each contain three

pairs of registers:

. address value and address mask
. data value and data mask

. control value and control mask.

Each register isindependently programmable and has a unique address. The function

and mapping of the registersis shown in Table B-5.

Table B-5 Function and mapping of EmbeddedICE-RT registers

Address Width Function

00000 6 Debug control

00001 5 Debug status

00010 1 Abort status

00100 6 Debug comms control register
00101 32 Debug comms data register
01000 32 Watchpoint 0 address value
01001 32 Watchpoint 0 address mask
01010 32 Watchpoint 0 data value
01011 32 Watchpoint 0 data mask
01100 9 Watchpoint 0 control value
01101 8 Watchpoint 0 control mask
10000 32 Watchpoint 1 address value
10001 32 Watchpoint 1 address mask
10010 32 Watchpoint 1 data value
10011 32 Watchpoint 1 data mask
10100 9 Watchpoint 1 control value
10101 8 Watchpoint 1 control mask

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

B-43

Debug in Depth

B.12.1 Programming and reading watchpoint registers

A watchpoint register is programmed by shifting data into the Embedded| CE-RT scan
chain, scan chain 2. The scan chain is a 38-bit shift register comprising:

. a 32-bit datafield
. a5-hit address field for watchpoint register writes
. aread/write bit.

This setup is shown in Figure B-7.

Scan chain
register
Update
Read/write
N / | Add
Add ress
ress [| decoder ;D—|
0
31
[Value | Mask Comparator > + Breakpoint
/ condition
Data
A[31:0] —p|
D[31:0] —p»
Control —|
0
T Watchpoint registers and comparators
DI TDO

Figure B-7 EmbeddedICE-RT block diagram

B-44

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

The data to be written is shifted into the 32-bit data field. The address of theregister is
shifted into the 5-bit address field. The read/write bit is set.

A register isread by shifting itsaddressinto the addressfield and clearing the read/write
bit.

Note

A read or write actually takes place when the TAP controller enters the UPDATE-DR
state.

The register addresses are shown in Table B-5 on page B-43.

Note

For DCC data register reads, the least significant bit of the shifted out address field is
used as a status bit, and reflects the value of bit O of the DCC control register. This
enables the debugger to confirm the status of the scan chain asvalid read data, and the
datais read in by the debugger during a single pass of the scan chain. A separate read
of the DCC control register and the DCC data register istherefore unnecessary, and the
DCC bandwidth is increased.

B.12.2 Using the mask registers

For each value register in aregister pair, thereis a mask register of the same format. If
abitis set in the mask register, the same bit in the corresponding value register is
disregarded during a comparison.

For example, when awatchpoint is required on a particular memory location, but the
datavalueisirrelevant, you can program the data mask register to 0xFFFFFFFF. Setting
all bitsin the data mask register causes the entire data busfield to be ignored.

Note

The mask is an XNOR mask rather than a conventional AND mask. When a bit in the
mask register is set, the comparator for that bit position always matches, irrespective of
the value register or the input value.

Clearing a bit in the mask register means that the comparator matches only if the input
value matches the value programmed into the corresponding bit of the value register.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-45

Debug in Depth

B.12.3 The control registers

The control value and control mask registers are mapped identically in the lower eight
bits, as shown in Figure B-8.

8

6 5 4 3 2 1 0

ENABLE

RANGE

CHAIN |EXTERN |nTRANS | nOPC | MAS[1] | MAS|[0] nRW

Figure B-8 Watchpoint control value and mask format

Bit 8 of the control value register isthe ENABLE bit and cannot be masked.

The bits have the following functions:

nRW

MAS[1:0]

Compares against the write signal from the core to detect the
direction of bus activity. nRW isO for aread cycleand 1 for a
write cycle.

Compares against theM AS[1:0] signal from the coreto detect the
size of bus activity.

The encoding islisted in Table B-6.

nOPC

NTRANS

Table B-6 MAS[1:0] signal encoding

bit 1 bit 0 Data size
0 0 Byte

0 1 Halfword
1 0 Word

1 1 Reserved

Detectsif the current cycleis an instruction fetch, with nOPC=0,
or adata access, with nOPC=1.

Compares against the not translate signal from the core to
distinguish between User Mode, with nTRANS=0, and non-user
mode, with N TRANS=1, accesses.

B-46 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

EXTERN[1:0]

CHAIN

RANGE

ENABLE

Debug in Depth

Is an external input to Embeddedl CE-RT that enables the
watchpoint to be dependent upon some external condition. The
EXTERN input for Watchpoint 0 is labeled EXTERNO. The
EXTERN input for Watchpoint 1 islabeled EXTERN1.

Can be referred to the chain output of another watchpoint to
implement, for example, debugger requests of the form:
breakpoint on address YYY only when in process XXX.Inthe
ARM7TDMI core Embeddedl CE-RT logic, the CHAINOUT
output of Watchpoint 1 isreferred to the CHAIN input of
Watchpoint 0. The CHAINOUT output isderived from aregister.
The address/control field comparator drives the write enable for
the register. The input to the register is the value of the datafield
comparator. The CHAINOUT register iscleared when the control
value register is written, or when nTRST is LOW.

Can be referred to another watchpoint unit.

Inthe ARM7TDMI core EmbeddedI CE-RT logic, the
RANGEOUT output of Watchpoint 1 is referred to the RANGE
input of Watchpoint 0. This enables the two watchpoints to be
coupled for detecting conditions that occur simultaneously, such
as range checking.

When awatchpoint match occurs, the internal BREAKPT signal
is asserted only when the ENABLE bit is set. Thisbit existsonly
in the value register. It cannot be masked.

For each of the bits[7:0] in the control value register, thereisacorresponding bit in the
control mask register. These bits remove the dependency on particular signals.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-47

Debug in Depth

B.13 Programming breakpoints

Breakpoints are classified as hardware breakpoints or software breakpoints:

Hardwar e breakpoints

Typically monitor the address value and can be set in any code, even in
code that isin ROM or code that is self-modifying.

Software breakpoints on page B-49

Monitor a particular bit pattern being fetched from any address. One
Embedded| CE-RT watchpoint can therefore be used to support any
number of software breakpoints. Software breakpoints can normally be
set only in RAM because a special bit pattern chosen to cause a software
breakpoint has to replace the instruction.

B.13.1 Hardware breakpoints

To make awatchpoint unit cause hardware breakpoints on instruction fetches:

1.

Program its address value register with the address of the instruction to be
breakpointed.

For an ARM-state breakpoint, program bits [1:0] of the address mask register to
b11. For a breakpoint in Thumb state, program bits[1:0] of the address mask
register to b01.

Program the data value register if you require a data-dependent breakpoint. (A
data-dependent breakpoint is one that matches the instruction code fetched as
well asthe address.) Ensure that you clear all the bits in the data mask register.

If the data valueis not required, program the data mask register to @xFFFFFFFF (all
bits set).

Program the control value register with nOPC = 0.
Program the control mask register with nOPC = 0.

When you need to make the distinction between User and non-User mode
instruction fetches, program the nTRANS value and mask bits appropriately.

If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

Program the mask bits for all unused control valuesto 1.

B-48

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

Note

In monitor mode, you must set the EmbeddedI CE-RT disable bit (bit 5 in the debug
control register) before changing the register values, and clear it on completion of the
programming.

B.13.2 Software breakpoints

To make a watchpoint unit cause software breakpoints on instruction fetches of a
particular bit pattern:

1. Program its address mask register to 0xFFFFFFFF(all bits set) so that the addressis
disregarded.

2. Programthe datavalueregister with the particular bit pattern that has been chosen
to represent a software breakpoint.

If you are programming a Thumb software breakpoint, repeat the 16-bit pattern
in both halves of the data value register. For example, if the bit pattern is 0xDEEE,
program 0xDEEEDEEE. When a 16-bit instruction is fetched, Embeddedl CE-RT
compares only the valid half of the data bus against the contents of the data value
register. In thisway, you can use a single watchpoint register to catch software
breakpoints on both the upper and lower halves of the data bus.

Program the data mask register to 0x00000000.
Program the control value register with nOPC = 0.

Program the control mask register with nOPC = 0 and all other bitsto 1.

o g > w

If you wish to make the distinction between User and non-User mode instruction
fetches, program the nTRANS bit in the control value and control mask registers
accordingly.

7. If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

Note
You do not have to program the address val ue register.

Setting the breakpoint
To set the software breakpoint:
1. Readtheinstruction at the desired address and store it away.

2. Writethe special hit pattern representing a software breakpoint at the address.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-49

Debug in Depth

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.

B-50 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.14 Programming watchpoints

To make awatchpoint unit cause watchpoints on data accesses:

1.

Program its address val ue register with the address of the data access to be
watchpointed.

Program the address mask register to 0x00000000.

Program the data value register if you require a data-dependent watchpoint. (A
data-dependent watchpoint is one that matches the data value read or written as
well asthe address.) Ensure that you clear all the bitsin the data mask register.

If the data valueis not required, program the data mask register to @xFFFFFFFF (all
bits set).

Program the control value register as follows:

. nOPC =1

. nRW = 0 for aread or nRW = 1 for awrite

. program M AS[1:0] with the value corresponding to the appropriate data

size.
Program the control mask register as follows:
. nOPC =0
. nRW =0
. MAS[1:0] =0
. all other bits set.
You can set nRW, or M AS[1:0] when both reads and writes, or data size accesses
are to be watchpointed respectively.

If you wish to make the distinction between User and non-User mode data
accesses, program the nTRANS bit in the control value and control mask
registers accordingly.

If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

Note

The above are examples of how to program the watchpoint register to generate
breakpoints and watchpoints. Many other ways of programming the registers are
possible. For instance, you can provide simpl e range breakpoints by setting one or more
of the address mask bits.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-51

Debug in Depth

B.15 The debug control register

The debug control register is six bitswide. Writes to the debug control register occur
when awatchpoint register is written. Reads of the debug control register occur when a
watchpoint register is read. See Programming and reading watchpoint registers on
page B-44 for more information.

Figure B-9 shows the function of each bit in the debug control register.

5 4 3 2 1 0

EmbeddedICE-RT Monitor mode

disable enable SBZ/RAZ INTDIS DBGRQ DBGACK

Figure B-9 Debug control register format

The debug control register bit assignments are shown in Table B-7.

Table B-7 Debug control register bit assignments

Bit Function

5 Used to disable the Embedded! CE-RT comparator outputs while the watchpoint and
breakpoint registers are being programmed. This bit can be read and written through
JTAG.
Set bit 5 when:

. programming breakpoint or watchpoint registers

. changing bit 4 of the debug control register.

You must clear bit 5 after you have made the changes, to re-enable the

Embedded| CE-RT logic.

Bit 5 iswritable when the coreis synchronized to MCL K, (when it is safeto mask the
comparator outputs), and readable when synchronized to TCK.

4 Used to determine the behavior of the core when breakpoints or watchpoints are
reached:

. If clear, the core enters debug state when a breakpoint or watchpoint is reached.

. If set, the core performs an abort exception when a breakpoint or watchpoint is
reached.

Thisbit can be read and written from JTAG.

3 Thisbit must be LOW.

B-52 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

Table B-7 Debug control register bit assignments (continued)

Bit Function
2 Used to disable interrupts:
. If set, theinterrupt enable signal of the core (IFEN) isforced LOW. The IFEN
signal is driven as shown in Table B-8.
. If clear, interrupts are enabled.
1 Used to force the value on DBGRQ.
0 Used to force the value on DBGACK.

B.15.1 Disabling EmbeddedICE-RT

The breakpoint and watchpoint registers are programmed from the JTAG port at therate
of TCK, but the core is synchronized to MCLK. MCLK and TCK are asynchronous,
so disabling EICE-RT (by setting bit 5) prevents metastable signals from entering the
core.

Whenever the setting of bit 5is changed, it must be read back again and polled until the
new value isread back correctly. This ensures synchronization from TCK to MCLK,
and from MCLK to TCK, regardless of the relative clock speeds.

Conditions for breakpoint and watchpoint generation are given in Monitor mode on
page 5-21.

B.15.2 Disabling interrupts

IRQs and FIQs are disabled under the following conditions:
. during debugging (DBGACK HIGH)
. when the INTDI S bit isHIGH.

The IFEN signal is driven as shown in Table B-8.

Table B-8 Interrupt signal control

DBGACK INTDIS IFEN Interrupts
0 0 1 Permitted
1 X 0 Inhibited
X 1 0 Inhibited

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-53

Debug in Depth

B.15.3 Forcing DBGRQ

Figure B-11 on page B-56 shows that the value stored in bit 1 of the debug control
register issynchronized and then ORed with the external DBGRQ before being applied
tothe processor. Theoutput of this OR gateisthe signal DBGRQI whichisbrought out
externally from the macrocell.

The synchronization between debug control register bit 1 and DBGRQI assistsin
multiprocessor environments. The synchronization latch only opens when the TAP
controller state machineisin the RUN-TEST-IDLE state. This enables an enter-debug
condition to be set up in all the processorsin the system while they are still running.
When the condition is set up in al the processors, it can be applied to them
simultaneously by entering the RUN-TEST-IDLE state.

B.15.4 Forcing DBGACK

Figure B-11 on page B-56 shows that the value of DBGACK | from the coreis ORed
with the value held in bit 0 of the debug control register to generate the external value
of DBGACK seen at the periphery of the ARM7TDMI core. This enables the debug
systemto signal to therest of the system that the coreisstill being debugged even when
system-speed accesses are being performed (when the internal DBGACK signal from
the core is LOW).

B-54

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.16 The debug status register

The debug statusregister isfivebitswide. If itisaccessed for awrite, with theread/write
bit set, the status bitsarewritten. If it isaccessed for aread, with the read/write bit clear,
the status bits are read. The format of the debug status register is shown in Figure B-10.

4 3 2 1 0

TBIT cgenL IFEN DBGRQ DBGACK

Figure B-10 Debug status register format

The debug status register bit assignments are shown in Table B-7 on page B-52.

Table B-9 Debug status register bit assignments

Bit Function

4 EnablesTBIT to beread. Thisenablesthe debugger to determinethe processor
state and therefore which instructions to execute.

3 Enablesthe debugger to determine if amemory access from the debug state has
completed.

2 Enables the state of the core interrupt enablesignal, | FEN, to be read. Enables

the state of the NM REQ signal from the core, synchronized to TCK, to be
read. This enables the debugger to determine that a memory access from the
debug state has compl eted.

1 Enable the value on the synchronized version of DBGRQ to be read.

0 Enabl e the value on the synchronized version of DBGACK to be read.

The structure of the debug control and status registers is shown in Figure B-11 on
page B-56.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-55

Debug in Depth

Debug Debug
control status
register register
Bit 4
TBIT >
(from core) Synch TBIT
cgenL ——— P Synch > Bit 3|
(from core) cgen

DBGACK |
(from core) > IFEN
(to core)
Bit 2 -
INTDIS ” Bit 2
IFEN
Bit 1
» Synch
DBGRQ Y » DBGRQI

(to core and
ARM7TDMI output)

Bit 1
DBGRQ Synch >
(from ARM7TDMI input) y DBGRQ
Bit 0
DBGACK %\ > DBGACK
y (to ARM7TDMI
: output)
Bit 0
DBGACKI » Synch >
(from core) DBGACK

Figure B-11 Debug control and status register structure

B-56 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.17 The abort status register

Only bit 0 of this 32 bit read/write register is used. It determines whether an abort
exception entry was caused by abreakpoint, awatchpoint, or area abort. Theformat is
shown in Figure B-12.

31:1 0
SBZ/RAZ DbgAbt

Figure B-12 Debug abort status register

Thisbit is set when the ARM7TDMI core takes a prefetch or data abort as aresult of a
breakpoint or watchpoint. If, on a particular instruction or data fetch, both the debug
abort and the external abort signal are asserted, then the external abort takespriority, and
the DbgAbt bit is not set. Once set, DbgAbt remains set until reset by the user. The
register is accessed by MRC and MCR instructions.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-57

Debug in Depth

B.18 Coupling breakpoints and watchpoints

You can couple watchpoint units 1 and O together using the CHAIN and RANGE
inputs. Using CHAIN enables Watchpoint O to be triggered only if Watchpoint 1 has
previously matched. The use of RANGE enables simple range checking to be
performed by combining the outputs of both watchpoaints.

B.18.1 Breakpoint and watchpoint coupling example

Let:

Av[31:0] be the value in the address value register
Am[31:0] be the value in the address mask register
A[31:0] be the address bus from the ARM 7TDMI core
Dv[31:0] be the value in the data val ue register
Dm[31:0] be the value in the data mask register

D[31:0] be the data bus from the ARM7TDMI core

Cv[8:0] be the value in the control value register

(m[7:0] be the value in the control mask register

C[9:0] be the combined control bus from the ARM7TDMI core, other

watchpoint registers and the EXTERN signal.

CHAINOUT signal
The CHAINOUT signal is derived asfollows:

WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]} == OxFFFFFFFFF)
CHAINOUT = ((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == Ox7FFFFFFFF)

The CHAINOUT output of watchpoint register 1 providesthe CHAIN input to
Watchpoint 0. This CHAIN input enables you to specify complicated configurations of
breakpoints and watchpoints.

Note
Thereisno CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint 0.

Consider, for example, the request by a debugger to breakpoint on the instruction at
location YY'Y when running process XX X in amulti-process system. If the current
process ID is stored in memory, you can implement the above function with a
watchpoint and breakpoint chained together. The watchpoint address pointsto aknown
memory location containing the current process ID. The watchpoint data points to the
required process ID. The ENABLE bit is cleared.

B-58

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

The address comparator output of the watchpoint is used to drive the write enable for

the CHAINOUT latch. Theinput to the latch isthe output of the data comparator from
the same watchpoint. The output of the latch drivesthe CHAIN input of the breakpoint
comparator. Theaddress Y Y'Y isstored in the breakpoint register and when the CHAIN
input is asserted, the breakpoint address matches and the breakpoint triggers correctly.

B.18.2 RANGEOUT signal

The RANGEOUT signal isderived as follows:

RANGEOUT = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]1}) == OXFFFFFFFFF) AND
((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR
Dm[31:0],Cm[7:5]}) == OX7FFFFFFFF)

The RANGEOUT output of watchpoint register 1 provides the RANGE input to
watchpoint register 0. This RANGE input enables you to couple two breakpoints
together to form range breakpoints.

Selectable ranges are restricted to being powers of 2. For example, if abreakpoint isto
occur when the addressisin the first 256 bytes of memory, but not in the first 32 bytes,
program the watchpoint as follows:

For Watchpoint 1:

1. Program Watchpoint 1 with an address value of 9x00000000 and an address mask
of 0x0000001F.

2. Clear the ENABLE bit.

3. Program dl other Watchpoint 1 registers as normal for a breakpoint. An address
within the first 32 bytes causes the RANGE output to go HIGH but does not
trigger the breakpoint.

For Watchpoint O:

1. Program Watchpoint O with an address value of 9x00000000 and an address mask
of 0x000000FF.

2. Set the ENABLE bhit.
3. Program the RANGE bit to match a 0.
4. Program all other Watchpoint 0 as normal for a breakpoint.

If Watchpoint O matches but Watchpoint 1 does not, that is the RANGE input to
Watchpoint 0 is 0, the breakpoint is triggered.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. B-59

Debug in Depth

B.19 EmbeddedICE-RT timing

Embeddedl CE-RT samples the EXTERN1 and EXTERNO inputs on the falling edge
of ECLK. Sufficient set-up and hold time must therefore be enabled for these signals.

Refer to Chapter 7 AC and DC Parameters for details of the required setup and hold
times for these signals.

B-60 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Debug in Depth

B.20 Programming Restriction

Because the monitor mode enable bit does not put the ARM7TDMI into debug state, it
is necessary to change the contents of the watchpoint registers while external memory
accesses are taking place, rather changing them when in debug state (where the coreis
halted).

If there is a possibility of false matches occurring during changes to the watchpoint

registers (caused by old datain some registers and new data in others) you must:

1. Disable the watchpoint unit by setting EmbeddedI CE-RT disable, bit 5 in the
debug control register.

2. Poll the debug control register until the Embeddedl CE-RT disablebit isread back
as set.

3. Changethe other registers.

4. Re-enablethewatchpoint unit by clearing the Embeddedl CE-RT disablebit inthe
debug control register.

See The debug control register on page B-52 for more information about controlling
core behavior at breakpoints and watchpoints.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. B-61

Debug in Depth

B-62 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Appendix C
Differences Between Rev 3a and Rev 4

This appendix describes the differences between Rev 3aand Rev 4 of the ARM7TDMI
processor. It contains the following sections:

. Summary of differences between Rev 3a and Rev 4 on page C-2
. Detailed descriptions of differences between Rev 3a and Rev 4 on page C-3.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. C-1

Differences Between Rev 3a and Rev 4

C.1 Summary of differences between Rev 3a and Rev 4

The changes incorporated in ARM7TDMI Rev 4 are as follows:

. improved low voltage operation

. addition of Embeddedl CE-RT logic

. enhancement to ETM interface

. ability to minimize power consumption (by disabling Embedded| CE-RT)
. improvement in Debug Communications Channel (DCC) bandwidth

. support for access to DCC through JTAG

. aterations to TAP Controller Scan Chain.

Thesearedescribed in detail in Detailed descriptions of differences between Rev 3a and
Rev 4 on page C-3.

C-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Differences Between Rev 3a and Rev 4

C.2 Detailed descriptions of differences between Rev 3a and Rev 4

This section describes the changesto ARM7TDMI Rev 4 in detail.

C.2.1 Improved low voltage operation

Reliable operation down to 1V is expected on most 0.18um processes.

C.2.2 Addition of EmbeddedICE-RT logic

Embedded| CE-RT isan enhanced implementation of the Embedded| CE logic that was
part of the ARM7TDMI Rev 3a. The extra feature provided by EmbeddedI CE-RT is
that upon a breakpoint or watchpoint, the core can be forced to take an exception, rather
than simply entering debug state. Because the core does not enter debug state, it can
continue to service hardware interrupt requests as normal.

Thisfeature is extremely useful where the core forms part of the feedback loop of a
mechanical system, where stopping the core could potentially |ead to system failure.

The addition of two extra bitsto the debug control register and the addition of a new
register (R2) in the coprocessor register map are the only aterations to the
programmer's model.

Bit 4 of the debug control register is monitor mode enable, and controls how the device
reacts on a breakpoint or watchpoint:

. when set, the core takes the instruction or data abort exception

. when clear, the core enters debug state.

Bit 5 of the debug control register is Embeddedl CE-RT disable. Setting this bit
temporarily disables breakpoints and watchpoints, enabling the breakpoint or
watchpoint registers to be programmed with new vaues. Clearing this bit makes the
new breakpoint or watchpoint values operational.

The new register (R2) in the coprocessor register map indicates whether the processor
entered the Prefetch or Data Abort exception due to either area abort, or dueto a
breakpoint or watchpoint.

Ability to disable EmbeddedICE logic

I mprovements have been made to the Embedded| CE | ogic to ensure that when DBGEN
istied low, much of the EmbeddedI CE logic is disabled to keep power consumption to
aminimum.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. C-3

Differences Between Rev 3a and Rev 4

C.2.3 Enhancement to ETM interface

An extraoutput signal has been added to the ETM interface on the ARM7TDMI Rev 4,
to improve program execution trace. Thissignal isINSTRVALID, and it connects
directly to the pin of the same nameon ETM7 Rev 1.

C.2.4 Improvement in Debug Communications Channel bandwidth

In ARM7TDMI Rev 3a, two accesses to scan chain 2 were required to read the DCC
data. The first accessed the status bit, and the second accessed the data itself.

To improve performance, only one accessisrequired to read both the dataand the status
bit, in the ARM7TDMI Rev 4 because the status bit is now included in the LSB of the
address field which is read from the scan chain.

The status bit in the DCC control register is left unchanged to ensure backwards
compatibility.

C.2.5 Access to Debug Communications Channel through JTAG

The DCC control register can be controlled from the JTAG interfacein ARM7TDMI
Rev 4. A write clears bit 0, the data read control bit.

C.2.6 Alterations to TAP controller scan chain
The alterations to the TAP controller scan chain are as follows:

TAP controller ID register
The TAP controller ID register value is now 0x40700F0F.

Scan chain 0 The output scan cells now include an update stage so that the
output pins of the ARM7TDMI do not toggle as shifted datais
scanned around the chain.

This scan chain aso now includes al the 1/0 pins of the
ARMT7TDMI (except for the TAP related ports that cannot be
scanned, for example TAPSM, TDI, and TDO). Previous
versions of the ARM7TDMI did not include pins associated with
the EmbeddedI CE logic.

The additional 1/0 pinsthat are now included in scan chain O are:
« DBGRQI

. COMMRX

. COMMTX

. NENOUTI

C-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Differences Between Rev 3a and Rev 4

. RANGEOUT1
. RANGEOUTO
. EXTERN1

. EXTERNO

. BUSEN

. DBGEN

. INSTRVALID.

The following pins are now no longer included in scan chain O:

. IFEN
. CGENDBGACK
. DCTL

Scan chains 1, 2, 3,4, and 8
Scan chains 1, 2, and 3 are unchanged.
Scan chains4 and 8 arereserved for internal use by ARM Limited.

C.2.7 Change to pin positioning
Pin order remains the same, with only one new pin appearing at the upper left corner of
the device (see Enhancement to ETM interface on page C-4).

C.2.8 Increased number of metal layers
The ARM7TDMI Rev 4 requires four metal layers, compared to three for the
ARM7TDMI Rev 3a.

C.2.9 Increased power consumption

Itisestimated that the ARM7TDMI Rev 4 will consumelessthan 10% more power than
the ARM7TDMI Rev 3a on the same process.

ARM DDI 0210B Copyright © 2001 ARM Limited. All rights reserved. C-5

Differences Between Rev 3a and Rev 4

C-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Glossary

Abort

Addressing modes

Arithmetic Logic Unit

ALU
ARM state

Big-endian

Banked registers

This glossary describes some of the terms used in this manual. Where terms can have
several meanings, the meaning presented here is intended.

Is caused by an illegal memory access. Abort can be caused by the external memory
system, an external MMU, or the Embedded| CE-RT logic.

A procedure shared by many different instructions, for generating values used by the
instructions. For four of the ARM addressing modes, the val ues generated are memory
addresses (whichisthetraditional role of an addressing mode). A fifth addressing mode
generates values to be used as operands by data-processing instructions.

The part of acomputer that performs all arithmetic computations, such as addition and
multiplication, and al comparison operations.

See Arithmetic Logic Unit.
A processor that is executing ARM (32-bit) instructionsis operating in ARM state.

Memory organization where the least significant byte of aword is at a higher address
than the most significant byte.

Register numberswhose physical register isdefined by the current processor mode. The
banked registers are registers R8 to R14, or R13 to R14, depending on the processor
mode.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. Glossary-1

Glossary

Breakpoint

CIsC

A location in the program. If execution reaches this location, the debugger halts
execution of the code image.

See also Watchpoint.

See Complex Instruction Set Computer.

Complex Instruction Set Computer

CPSR

Control bits

A microprocessor that recognizes alarge number of instructions.
See also Reduced Instruction Set Computer.
See Program Status Register.

The bottom eight bits of a program status register. The control bits change when an
exception arises and can be altered by software only when the processor isin a
privileged mode.

Current Program Status Register

DCC

Debug state

Debugger

EmbeddedICE

EmbeddedICE-RT
Exception modes

Exception

External abort
FIQ
ICE

Idempotent

See Program Status Register.
Debug Communications Channel.

A condition that allows the monitoring and control of the execution of a processor.
Usually used to find errors in the application program flow.

A debugging system which includes a program, used to detect, |ocate, and correct
software faults, together with custom hardware that supports software debugging.

The EmbeddedI CE Logic is controlled via the JTAG test access port, using a protocol
converter such as Multil CE: an extra piece of hardware that allows software tools to
debug code running on a target processor.

See also ICE and JTAG.
A version of EmbeddedI| CE logic that has improved support for real-time debugging.
Privileged modes that are entered when specific exceptions occur.

Handles an event. For example, an exception could handle an external interrupt or an
undefined instruction.

An abort that is generated by the external memory system.
Fast interrupt.
See In-circuit emulator.

A mathematical quantity that when applied to itself under a given binary operation
equals itself.

Glossary-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

In-circuit emulator

IRQ

Glossary

An In-Circuit Emulator (ICE), is a device that aids the debugging of hardware and
software. Debuggable ARM processors such asthe ARM7TDMI have extra hardware
called EmbeddedI CE to assist this process.

See also Embedded| CE.

Interrupt request.

Joint Test Action Group

JTAG

Link register

Little-endian memory

LR

Macrocell

The name of the organization that developed standard |EEE 1149.1. This standard
defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices.

See Joint Test Action Group.

Thisregister holds the address of the next instruction after a branch with link
instruction.

Memory organization where the most significant byte of aword is at a higher address
than the least significant byte.

See Link register

A complex logic block with a defined interface and behavior. A typical VLSI system
will comprise several macrocells (such asan ARM7TDMI, an ETM7, and a memory
block) plus application-specific logic.

Memory Management Unit

MMU
PC

Privileged mode

Allows control of amemory system. Most of the control is provided through translation
tables held in memory. The ARM7TDMI processor does not include a memory
management unit, but you can add one if required.

See Memory Management Unit
See Program Counter.

Any processor mode other than User mode. Memory systems typically check memory
accesses from privileged modes against supervisor access permissions rather than the
more restrictive user access permissions. The use of someinstructionsis also restricted
to privileged modes.

Processor Status Register

Program Counter

See Program Status Register

Register 15, the Program Counter, is used in most instructions as a pointer to the
instruction that is two instructions after the current instruction.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. Glossary-3

Glossary

Program Status Register

PSR

RAZ

Contains some information about the current program and some information about the
current processor. Also referred to as Processor Status Register.

Also referred to as Current PSR (CPSR), to emphasize the distinction between it and
the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current
function was called, and which will be restored when contral is returned.

See Program Status Register.
Read as zero.

Reduced Instruction Set Computer

RISC

A type of microprocessor that recognizesalower number of instructionsin comparison
with a Complex Instruction Set Computer. The advantages of RISC architectures are:

. they can executetheir instructions very fast because theinstructions are so simple

. they require fewer transistors, this makes them cheaper to produce and more
power efficient.

See also Complex Instruction Set Computer.

See Reduced Instruction Set Computer

Saved Program Status Register

SBO
SBZ

Should Be One fields

Should Be Zero fields

The Saved Program Status Register which isassociated with the current processor mode
and is undefined if there is no such Saved Program Status Register, asin User mode or
System mode.

See also Program Status Register.
See Should Be Onefidlds.
See Should Be Zero fields.

Should be written as one (or all ones for bit fields) by software. Values other than one
produces unpredictable results.

See also Should Be Zero fields.

Should be written as zero (or al Osfor bit fields) by software. Values other than zero
produce unpredictable results.

See also Should Be Onefields.

Software Interrupt Instruction

Thisinstruction (SW1) enters Supervisor mode to request a particular operating system
function.

Glossary-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

SPSR

Stack pointer

Status registers
SP

SWi

TAP

Test Access Port

Thumb instruction

Thumb state
UND
Undefined
UNP

Unpredictable

Unpredictablefields

Watchpoint

Glossary

See Saved Program Status Register.

A register or variable pointing to thetop of astack. If the stack isfull stack the SP points
to the most recently pushed item, elseif the stack is empty, the SP pointsto the first
empty location, where the next item will be pushed.

See Program Status Register.

See Stack pointer

See Software Interrupt Instruction.
See Test access port.

The collection of four mandatory and one optional terminalsthat form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
areTDI, TDO, TMS, and TCK. The optional terminal isnTRST.

A halfword which specifies an operation for an ARM processor in Thumb state to
perform. Thumb instructions must be halfword-aligned.

A processor that is executing Thumb (16-bit) instructions is operating in Thumb state.
See Undefined.

Indicates an instruction that generates an undefined instruction trap.

See Unpredictable

Means the result of an instruction cannot be relied upon. Unpredictable instructions
must not halt or hang the processor, or any parts of the system.

Do not contain valid data, and avalue can vary from moment to moment, instruction to
instruction, and implementation to implementation.

A locationin theimagethat ismonitored. If the val ue stored there changes, the debugger
halts execution of theimage.

See also Breakpoint.

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved. Glossary-5

Glossary

Glossary-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0210B

Index

Theitemsin thisindex arelisted in aphabetical order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

Abort Mode 2-7

ABORT signal 3-24

AC Timing diagrams 7-2
ABE address control 7-5
ALE address control 7-20
APE address control 7-21
bidirectional dataread cycle 7-6
bidirectional datawritecycle 7-5
breakpoint timing 7-15
configuration pin timing 7-10
coprocessor timing 7-11
data bus control 7-7
DCC output 7-14
debug timing 7-13
exceptiontiming 7-12
general timings 7-3, 7-4
MCLK 7-16
output 3-statetime 7-8
scan general timing 7-17
synchronousinterrupt 7-13
TCK and ECLK redtionship 7-15

unidirectiona dataread cycle 7-9

unidirectiona datawritecycle 7-9

units of nanoseconds 7-22
Accesstimes, stretching 3-29
Accesses

byte 3-26

halfword 3-26

reads 3-26

writes 3-27
Accessing highregistersin Thumb state

2-12

Address hits, significant 3-12
Address bus, configuring 3-14
Addresstiming 3-14
Addressing signals 3-11
ARM

instruction summary 1-13
ARM-state

addressing modes 1-16

condition fields 1-20

fields 1-19

operand 2 1-19

register organization 2-9

register set 2-8

B

Bidirectional bustiming 3-18
Bidirectional databus 3-19
Big-endian 2-4, 2-5
Block diagram of ARM7TDMI
processor 1-8
Breakpoints
hardware B-48
programming B-48
software B-49
clearing B-50
setting B-49
timing 7-15
Burst types 3-7
Bus cycles
types
coprocessor register transfer 3-9
internal 3-7
merged I-S 3-8

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

Index-1

Index

nonsequential 3-5
sequential 3-6
types, description 3-4
use of N\WAIT 3-29
Businterface
cycletypes 3-4
signals 3-3
Byte accesses 3-26, 3-27

C

Clock domains 5-11
Clocks 5-3
Code density 1-6
Condition code flags 2-13
Control bits 2-14
Coprocessor
busy-wait sequence 4-8
Coprocessor connections
bidirectional bus 4-12
unidirectional bus 4-13
Coprocessor interface
handshaking 4-6
Coprocessor register cycles 3-9
Coprocessors
about 4-2
absence of external 4-15
availability 4-3
connecting 4-12
connecting multiple 4-13
connecting single 4-12
consequences of busy-waiting 4-8
data operation sequence 4-10
data operations 4-10
externa 4-15
interface
signds 4-4
load and store operations 4-10
load sequence 4-11
privileged instructions 4-17
register transfer instructions 4-9
register transfer sequence 4-9
signaling 4-7
timing 7-11
undefined instructions 4-16
Coreclocks B-23
Core scan chain arrangements B-4
CPA 47

CPB 4-7
CPnCPI 4-7

D

Data
multiplexing 4-13
Data Aborts B-35
Data bus control circuit 3-20
Datareplication 3-28
Datatimed signas 3-17
Datatypes 2-6
Datawrite buscycle 3-20
DCC
accessthrough JTAG C-4
bandwidth improvements C-4
communications through 5-19
interrupt-driven use 5-20
registers 5-17
DCC control register 5-17
Debug
behavior of PC B-31
breakpoints B-31
hardware B-48
programming B-48
software B-49, B-50
bypassregister B-15
clock 5-3
clock switch during B-23

clock switch during test 5-12, B-24

clock switching 5-11

communications channel. See DCC

communications through the DCC
5-19

control and status register format
B-56

control register B-52

control registers B-46

coreclocks B-23

core state B-25

coupling breakpoints and
watchpoints B-58

determining core state 5-13, B-25

determining system state 5-13, B-27

Embedded| CE-RT
block diagram B-44
timing B-60

entry into 57

on breakpoint 5-8
on debug request 5-9
on watchpoint 5-9
exit sequence B-29
function and mapping of
Embedded| CE-RT registers
B-43
host 5-4
ID coderegister B-15
ingtruction register B-9, B-16
interface 5-2
interface signas 5-7
interrupt-driven use of DCC 5-20
mask registers B-45
messages
receiving from the debugger
5-20
sending to the debugger 5-19
output enable and disable times due
to HIGHZ TAPingruction 7-19
priorities and exceptions B-34
Data Aborts B-35
interrupts B-34
Prefetch Abort B-34
protocol converter 5-4
public instructions B-10
BYPASS B-13
CLAMP B-12
CLAMPZ B-12
EXTEST B-10
HIGHZ B-12
IDCODE B-13
INTEST B-13
RESTART B-11
SAMPLE/PRELOAD B-11
SCAN_N B-11
request B-33
reset period timing 7-18
return address calculation B-33
scan chain0 B-19
scan chain O cells B-36
scanchainl B-20
scan chain 1 cells B-41
scan chain2 B-21
scan chain3 B-21
scan chains B-18
scan path select register B-16
stages 5-2
statusregister B-55

Index-2

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

system sppeed access B-33
system state B-25
systems 5-4
target 5-5
test dataregisters B-15
bypass B-15
ID code B-15
instruction B-16
scan path select B-16
timing 7-13
watchpoint registers B-43
programming and reading B-44
watchpoint with another exception
B-32
watchpoints B-32
programming B-51
Debug Communications Channel. See
DCC
Depipelined address timings 3-15

E

EmbeddedI CE
timing B-60
EmbeddedICE-RT 1-4, C-3
disabling 5-16
logic 5-14
registers
function and mapping B-43
ETM7 interface C-4
Exception
timing 7-12
Exception entry/exit summary 2-16
Exception priorities 2-22
Exception vectors 2-21
Exceptions 2-16
abort 2-19
data 2-20
prefetch 2-20
entering 2-17
FIQ 2-18
IRQ 2-19
leaving 2-18
Swi 2-21
undefined instruction 2-21
External bus arrangement 3-17
External connection of unidirectional
buses 3-19

External coprocessors 4-15

F

FIQ mode 2-7

H

Halfword accesses 3-26, 3-27

ID coderegister B-15
Instruction cycle timings

branch 6-4

branch and exchange 6-6

branch with link 6-4

coprocessor absent 6-27

coprocessor data operation 6-20

coprocessor datatransfer 6-21

coprocessor register transfer 6-25

data operations 6-7

dataswap 6-18

exceptions 6-19

instruction speed summary 6-29

load multiple registers 6-15

load register 6-12

multiply 6-9

multiply accumulate 6-9

store multiple registers 6-17

store register 6-14

SWI 6-19

Thumb branch with link 6-5

undefined instructions 6-27

unexecuted instructions 6-28
Ingtruction pipeline 1-2, 1-3
Instruction register B-9
Instruction set

ARM 1-5

ARM formats 1-12

summary 1-11

Thumb 1-5, 1-20

Thumb formats 1-21

Thumb summary 1-22
Instruction set formats 1-11
Instruction speed summary 6-29

Index

Instructions
LDC 4-10
STC 4-10
INSTRVALID signa C-4
Internal cycles 3-7
Interrupt disable bits 2-14
Interrupt latencies 2-23
maximum 2-23
minimum 2-23
IRQ mode 2-7

L

LDC 4-10
Link register 2-8
Little-endian 2-4

M

Memory access 1-3
Memory cycletiming
summary 3-10
Memory formats 2-4
big-endian 2-4
little-endian 2-4
Merged I-Scycles 3-8
Mode bits 2-15
Modulating MCLK 3-29
Monitor mode 5-21

N

Nonsequentia cycles 3-5

O

Operating modes 2-7

Operating states 2-3
switching states 2-3

Operating voltage C-3

P

PC register 2-8

ARM DDI 0210B

Copyright © 2001 ARM Limited. All rights reserved.

Index-3

Index

Pipdine 1-3

follower 4-5
Pipelined addresstimings 3-14
Prefetch Abort B-34
Privileged mode access 3-31
Processor operating states 2-3
Program status register format 2-13
Programmer’smodel 2-2
Protocol converter 5-4
Public instructions B-10
Pullup resistors B-8

R

Registers 2-8
mapping of Thumb-state onto
ARM-state 2-11
organization
ARM-state 2-9
Thumb-state 2-10
program status 2-13
relationship between ARM-state and
Thumb-state 2-11
Reserved bits 2-15
Reset 2-24
Reset sequence after power up 3-32

S

Scan chain0 B-4, B-19
cells B-36
Scanchainl B-4, B-20
cells B-41
Scan chain2 B-5, B-21
Scanchain3 B-21
Scan chains
implementation B-3
JTAG interface B-3
Sequentia accesscycle 3-7
Sequentia cycles 3-6
Signal types A-3
Signals
addressclass 3-11
businterface 3-3
clock and clock control 4-4
coprocessor interface 4-4
descriptions A-4

Significant address bits 3-12 W
Simple memory cycle 3-4

SRAM compatibleaddresstiming 3-16 Watchpoint registers B-43
STC 4-10 programming and reading B-44

Supervisor Mode 2-7
Switching state 2-3
System Mode 2-7

System speed access B-33
System timing 3-30

T
T bit 2-14
TAP
controller
resetting B-7
state machine B-5
Tap
controller

scan chain C-4
Testchip data bus circuit 3-23
Testchip example system 3-22
Thumb
code 1-6
Thumb-state
register organization 2-10
Timing diagrams 7-2
Tristate control of processor outputs
3-21

U

Undefined instruction trap 1-13
undefined ingtructions 6-27
Undefined Mode 2-7
Unidirectional bustiming 3-18
Unidirectional databus 3-18
User Mode 2-7

Vv

Voltage, operating C-3

Watchpoints
coupling B-58
programming B-51
Word accesses 3-27

Index-4 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0210B

	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Intended audience
	Using this manual
	Typographical conventions
	Timing diagram conventions
	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on the ARM7TDMI core
	Feedback on this document

	1 Introduction
	1.1 About the ARM7TDMI core
	1.1.1 The instruction pipeline
	1.1.2 Memory access
	1.1.3 Memory interface
	1.1.4 EmbeddedICE-RT logic

	1.2 Architecture
	1.2.1 Instruction compression
	1.2.2 The Thumb instruction set

	1.3 Block, core, and functional diagrams
	1.4 Instruction set summary
	1.4.1 Format summary
	1.4.2 ARM instruction summary
	Addressing modes
	Operand 2
	Fields
	Condition fields

	1.4.3 Thumb instruction summary

	2 Programmer’s Model
	2.1 About the programmer’s model
	2.2 Processor operating states
	2.2.1 Switching state

	2.3 Memory formats
	2.3.1 Little-endian
	2.3.2 Big-Endian

	2.4 Data types
	2.5 Operating modes
	2.6 Registers
	2.6.1 The ARM-state register set
	2.6.2 The Thumb-state register set
	2.6.3 The relationship between ARM-state and Thumb-state registers
	2.6.4 Accessing high registers in Thumb state

	2.7 The program status registers
	2.7.1 Condition code flags
	2.7.2 Control bits
	Interrupt disable bits
	T bit
	Mode bits

	2.7.3 Reserved bits

	2.8 Exceptions
	2.8.1 Exception entry and exit summary
	2.8.2 Entering an exception
	2.8.3 Leaving an exception
	2.8.4 Fast interrupt request
	2.8.5 Interrupt request
	2.8.6 Abort
	Prefetch Abort
	Data Abort

	2.8.7 Software interrupt instruction
	2.8.8 Undefined instruction
	2.8.9 Exception vectors
	2.8.10 Exception priorities

	2.9 Interrupt latencies
	2.9.1 Maximum interrupt latencies
	2.9.2 Minimum interrupt latencies

	2.10 Reset

	3 Memory Interface
	3.1 About the memory interface
	3.2 Bus interface signals
	3.3 Bus cycle types
	3.3.1 Nonsequential cycles
	3.3.2 Sequential cycles
	3.3.3 Internal cycles
	3.3.4 Merged IS cycles
	3.3.5 Coprocessor register transfer cycles
	3.3.6 Summary of ARM memory cycle timing

	3.4 Addressing signals
	3.4.1 A[31:0]
	3.4.2 nRW
	3.4.3 MAS[1:0]
	3.4.4 nOPC
	3.4.5 nTRANS
	3.4.6 LOCK
	3.4.7 TBIT

	3.5 Address timing
	3.6 Data timed signals
	3.6.1 D[31:0], DOUT[31:0], and DIN[31:0]
	Unidirectional data bus
	Bidirectional data bus
	ARM7TDMI core test chip example system

	3.6.2 ABORT
	3.6.3 Byte latch enables
	3.6.4 Byte and halfword accesses
	Reads
	Writes

	3.7 Stretching access times
	3.7.1 Modulating MCLK
	3.7.2 Use of nWAIT to control bus cycles

	3.8 Privileged mode access
	3.9 Reset sequence after power up

	4 Coprocessor Interface
	4.1 About coprocessors
	4.1.1 Coprocessor availability

	4.2 Coprocessor interface signals
	4.3 Pipeline following signals
	4.4 Coprocessor interface handshaking
	4.4.1 The coprocessor
	4.4.2 The ARM7TDMI processor
	4.4.3 Coprocessor signaling
	4.4.4 Consequences of busy-waiting
	4.4.5 Coprocessor register transfer instructions
	4.4.6 Coprocessor data operations
	4.4.7 Coprocessor load and store operations

	4.5 Connecting coprocessors
	4.5.1 Connecting a single coprocessor
	4.5.2 Connecting multiple coprocessors

	4.6 If you are not using an external coprocessor
	4.7 Undefined instructions
	4.8 Privileged instructions

	5 Debug Interface
	5.1 About the debug interface
	5.1.1 Stages of debug
	5.1.2 Clocks

	5.2 Debug systems
	5.2.1 Debug host
	5.2.2 Protocol converter
	5.2.3 Debug target

	5.3 Debug interface signals
	5.3.1 Entry into debug state
	Entry into debug state on breakpoint
	Entry into debug state on watchpoint
	Entry into debug state on debug request

	5.3.2 Action of the ARM7TDMI processor in debug state
	5.3.3 Action of the ARM7TDMI core in monitor mode

	5.4 ARM7TDMI core clock domains
	5.4.1 Clock switch during debug
	5.4.2 Clock switch during test

	5.5 Determining the core and system state
	5.6 About EmbeddedICE-RT logic
	5.7 Disabling EmbeddedICE-RT
	5.8 Debug Communications Channel
	5.8.1 DCC control register
	5.8.2 Communications through the DCC
	Sending a message to the debugger
	Receiving a message from the debugger
	Interrupt-driven use of the DCC

	5.9 Monitor mode

	6 Instruction Cycle Timings
	6.1 About the instruction cycle timing tables
	6.2 Branch and branch with link
	6.3 Thumb branch with link
	6.4 Branch and Exchange
	6.5 Data operations
	6.6 Multiply and multiply accumulate
	6.7 Load register
	6.8 Store register
	6.9 Load multiple registers
	6.10 Store multiple registers
	6.11 Data swap
	6.12 Software interrupt and exception entry
	6.13 Coprocessor data operation
	6.14 Coprocessor data transfer from memory to coprocessor
	6.15 Coprocessor data transfer from coprocessor to memory
	6.16 Coprocessor register transfer, load from coprocessor
	6.17 Coprocessor register transfer, store to coprocessor
	6.18 Undefined instructions and coprocessor absent
	6.19 Unexecuted instructions
	6.20 Instruction speed summary

	7 AC and DC Parameters
	7.1 Timing diagrams
	7.2 Notes on AC Parameters
	7.3 DC parameters

	A Signal and Transistor Descriptions
	A.1 Transistor dimensions
	A.2 Signal types
	A.3 Signal descriptions

	B Debug in Depth
	B.1 Scan chains and the JTAG interface
	B.1.1 Scan chain implementation
	Scan chain 0
	Scan chain 1
	Scan chain 2

	B.1.2 TAP state machine

	B.2 Resetting the TAP controller
	B.3 Pullup resistors
	B.4 Instruction register
	B.5 Public instructions
	B.5.1 EXTEST (b0000)
	B.5.2 SCAN_N (b0010)
	B.5.3 SAMPLE/PRELOAD (b0011)
	B.5.4 RESTART (b0100)
	B.5.5 CLAMP (b0101)
	B.5.6 HIGHZ (b0111)
	B.5.7 CLAMPZ (b1001)
	B.5.8 INTEST (b1100)
	B.5.9 IDCODE (b1110)
	B.5.10 BYPASS (b1111)

	B.6 Test data registers
	B.6.1 Bypass register
	B.6.2 ARM7TDMI core device IDentification (ID) code register
	B.6.3 Instruction register
	B.6.4 Scan path select register
	B.6.5 Scan chains 0, 1, 2, and 3
	Scan chain 0 and 1
	Scan chain 0
	Scan chain 1
	Scan chain 2
	Scan chain 3

	B.7 The ARM7TDMI core clocks
	B.7.1 Clock switch during debug
	B.7.2 Clock switch during test

	B.8 Determining the core and system state in debug state
	B.8.1 Determining the core state
	B.8.2 Determining system state
	Restrictions on setting BREAKPT

	B.8.3 Exit from debug state

	B.9 Behavior of the program counter in debug state
	B.9.1 Software breakpoints
	B.9.2 Watchpoints
	B.9.3 Watchpoint with another exception
	B.9.4 Debug request
	B.9.5 System speed access
	B.9.6 Summary of return address calculations

	B.10 Priorities and exceptions
	B.10.1 Breakpoint with Prefetch Abort
	B.10.2 Interrupts
	B.10.3 Data Aborts

	B.11 Scan chain cell data
	B.11.1 Scan chain 0 cells
	B.11.2 Scan chain 1 cells

	B.12 The watchpoint registers
	B.12.1 Programming and reading watchpoint registers
	B.12.2 Using the mask registers
	B.12.3 The control registers

	B.13 Programming breakpoints
	B.13.1 Hardware breakpoints
	B.13.2 Software breakpoints
	Setting the breakpoint
	Clearing the breakpoint

	B.14 Programming watchpoints
	B.15 The debug control register
	B.15.1 Disabling EmbeddedICE-RT
	B.15.2 Disabling interrupts
	B.15.3 Forcing DBGRQ
	B.15.4 Forcing

	B.16 The debug status register
	B.17 The abort status register
	B.18 Coupling breakpoints and watchpoints
	B.18.1 Breakpoint and watchpoint coupling example
	CHAINOUT signal

	B.18.2 RANGEOUT signal

	B.19 EmbeddedICE-RT timing
	B.20 Programming Restriction

	C Differences Between Rev 3a and Rev 4
	C.1 Summary of differences between Rev 3a and Rev 4
	C.2 Detailed descriptions of differences between Rev 3a and Rev 4
	C.2.1 Improved low voltage operation
	C.2.2 Addition of EmbeddedICE-RT logic
	Ability to disable EmbeddedICE logic

	C.2.3 Enhancement to ETM interface
	C.2.4 Improvement in Debug Communications Channel bandwidth
	C.2.5 Access to Debug Communications Channel through JTAG
	C.2.6 Alterations to TAP controller scan chain
	C.2.7 Change to pin positioning
	C.2.8 Increased number of metal layers
	C.2.9 Increased power consumption

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

