Preface

My first book, “u C/OS The Real-Time Kernel” is now 6 years old and the publisher has sold well
over 15,000 copies around the world. When | was asked to do a second edition, | thought it would
be afairly straightforward task; a few corrections here and there, clarify a few concepts, add a
function or two to the kernel, etc. If you have a copy of the first edition, you will notice that
“UCIOS 11, The Real- Time Kernel” sin fact amajor revision. For some strange reason, | wasn’t
satisfied with minor corrections. Also, when my publisher told me that this time, the book would
be a ‘hard cover’, | really wanted to give you your moneys worth. In al, | added more than 200
new pages, and re-wrote the majority of the pages| did keep. | added a porting guide to help you
port uC/OS-1 to the processor of your choice. Also, | added a chapter that will guide you through
upgrading a pC/OS port to PC/OSHI.

The code for uC/OSI is basically the same as that of uC/OS except that it contains a number of
new and useful features, is much better commented, and should be easier to port to processor
architectures. pPC/OS-11 offers al the features provided in p C/OS as well as the following new
features.

A fixed-szed block memory manager,
A service to dlow a task to suspend its execution for a certain amount of time

(specified in hours, minutes, seconds and milliseconds),
User definable ‘ cdlout’ functions that are invoked when:

atask iscreated,
atask is ddeted,

acontext switch is performed,
adock tick occurs.
A new task creete function that provides additiond features,
Stack checking,
A function returning the verson of pC/OSH,
And more.

HC/OS-I | Goals

Probably the most important goal of pu C/OS-11 was to make it backward compatible with u C/OS (at least from an
application’s standpoint). A p C/OS port might need to be modified to work with u C/OS-11 but at least, the application
code should requireonly minor changes(if any). Also, becausen C/OS 11 isbased on the samecoreasp C/OS, itisjust
asreliable. | added conditional compilationto allow youto further reduce the amount of RAM (i.e. dataspace) needed
by u C/OS I1. Thisisespecialy useful when you have resource limited products. | also added the feature described in
the previous section and cleaned up the code.

Where the book is concerned, | wanted to clarify some of the concepts described in the first edition and provide
additional explanations about how p C/OS-11 works. | had numerous requests about doing a chapter on how to port

M C/OS and thus, such a chapter has been included in this book for p C/OSHI.



| ntended Audience

Thisbook isintended for embedded system programmers, consultants and students interested in real-time operating
systems. u C/OS-I1 isahigh performance, deterministic real-timekernel and can be embeddedin commercial products
(see Appendix F, Licensing). Instead of writing your own kernel, you should consider g C/OS-11. You will find, as |
did, that writing akernel isnot as easy asit first |ooks.

I'm assuming that you know C and have a minimum knowledge of assembly language. Y ou should also understand
microprocessor architectures.

What you will need to use pC/OS-11

The code supplied with this book assumes that you will be using an IBM -PC/AT or compatible (80386 Minimum)
computer running under DOS 4.x or higher. The code was compiled with Borland International’s C++ V3.1. You
should have about 5 MBytes of free disk space on you hard drive. | actually compiled and executed the sample code
provided in this book in a DOS window under Windows 95.

Touse p C/OS-1 on adifferent target processor (than a PC), you will need to either port p C/OS-11 to that processor
yourself or, obtain one from p C/OSH| official WEB site at http://www.uCOS-|1.com Y ou will aso need appropriate
software development tools such as an ANSI C compiler, an assembler, linker/locator and some way of debugging
your application.

Theu C/OS Story

Many years ago, | designed a product based on an Intel 80C188 at Dynalco Controls and | needed areal-time kernel.
At my previous employer, | had been using a well known kernel (let's call it kernel ‘A’) but, found it to be too
expensive for the application | was designing. We then found alower cost kernel ($1000 at the time) and started our
designwithit. Let’scall thiskernel, kernel ‘ B'. We spent about two monthstrying to get acouple of very simpletasks
to run. Wewere calling the vendor almost on a daily basisto get help making thiswork. The vendor claimed that this
kernel was written in C. However, we had to initialize every single object using assembly language code. Although
the vendor was very patient, we decided that we had enough of this. Our product was falling behind schedule and we
really didn’t want to spend our time debugging thislow cost kernel. It turns out that we were one of thisvendor’sfirst
customer and the kernel was really not fully tested and debugged!

To get back on track, we decided to go back and use kernel ‘A’. The cost was about $5000 for devel opment seat and
we had to pay a per usage fee of about $200 for each unit that we shipped! Thiswas alot of money at the time, but it
bought us some peace of mind. We got the kernel up and running in about 2 days! Three monthsinto the project, one
of our engineers discovered what |ooked like abug in the kernel. We sent the code to the vendor and sure enough, the
bug was confirmed as being in the kernel. The vendor provided a 90 day warranty but, that had expired so, in order to
get support, we had to pay an addition $500 per year for * maintenance’. We argued with the salesperson for a few
months that they should fix the bug since we were actually doing them afavor. They wouldn’t budge! Finally, we
gavein, we bought the mai ntenance contract and the vendor fixed the bug six monthslater! Y es, six monthslater. We
were furious but most importantly, late delivering our product. In all, it took close to ayear to get our product to work
reliably withkernel*A’. | must admit, however, that we never had any problemswith it since.

Asthiswas going on, | naively thought, “ Well, it can't be that difficult to write akernel. All it needsto doissave and
restore processor registers’ . That'swhen | decided totry it out and write my own (part time at night and on weekends).
It took me about ayear to get the kernel to be just as good (and in some ways better) than kernel ‘A’. | didn’'t want to
start acompany and sell it because there were already about 50 kernels out there so, why have another one?

I then thought of writing a paper for amagazine. | first went to the” C User's Journal (CUJ)” (the kernel was written
in C) which, | had heard, was offering $100 per published page when other magazines were only paying $75 per page.
My paper had 70 or so pages so, that would be a nice compensation for all the time | spent working on my kernel.



Unfortunately, the article was rejected! There were two reasons. First, the article was too long and the magazine
didn't want to publish aseries. Second, they didn't want to have ‘another kernel article'.

| then decided to turn to Embedded Systems Programming (ESP) magazine because my kernel was designed for

embedded systems. | contacted the editor of ESP (Mr. Tyler Sperry) and told him that | had this kernel | wanted to
publishin hismagazine. | got the same response from Tyler as| did from the C Journal: “ Not another kernel article?’

| told him that this kernel was different, it was preemptive, it was comparable to many commercia kernels and that he
could put the source code on the ESP BBS (Bulletin Board Service). | was calling Tyler two or three times a week
(basically begging him) until hefinally gavein (hewas probably tired of having mecall him) and decideto publishthe
article. My article got edited down from 70 pages to about 30 pages and was published in two consecutive months
(May 1992 and June 1992). The article was probably the most popular articlein 1992. ESP had over 500 downloads
of the code from the BBSin the first month. Tyler may have feared for hislife because kernel vendors were upset that
he published akernel in his magazine. | guess that these vendors must have recognized the quality and capabilities of
p C/OS (was caled L COS then). The article was really the first that exposed the internals of a real-time kernel so,
some of the secrets were out.

Just about the time the article came out in ESP, | got a call back from Dr. Bernard Williams at R&D Publications

(publisher of CUJ), 6 months after the initial contact with CUJ. He had |eft a message with my wife and told her that
he wasinterested in the article! ??! | called him back and told him something like: “ Don’t you think you are alittle bit
latewiththis? Thearticleisbeing publishedin ESP.” Berney said: “ No, No, youdon't understand, because the article
issolong, | want to make abook out of it.” Initially, Berney simply wanted to publish what | had (asis) so the book

would only have 80 or so pages. | saidto him, “If | going to write abook, | want to do it right.” | then spent about 6

months adding contents to what is now know asthefirst edition. Inall, the book had about 250 pagesto it. | changed

the name of u COS to 1 C/OS because ESP readers had been calling it ‘Mucus’ whichdidn’t sound too healthy! Come
to think of it, maybe it was a kernel vendor that first came up with the name. Anyway, u C/OS The Real -Time Kernel

was then born. Sales were somewhat slow to start. Berney and | projected that we would sell about 4000 to 5000

copiesinthelifeof the book but at that rate, wewould belucky if it sold 2000 copies. Berney insisted that these things
take time to get known so, he continued advertising in CUJ for about ayear.

A month or so before the book came out, | went to my first Embedded Systems Conference (ESC) in Santa Clara, CA
(September 1992). | then met Tyler Sperry for thefirst timeand | showed him thefirst draft copy of my book. Hevery
quickly glanced at it and said something like: “ Would you like to speak at the next Embedded Systems Conferencein
Atlanta?’ Notknowingany better, | said* Sure, what should | talk about?’ Hesaidwhat about“ Using small real-time
kernels?” | said “Fine” . On the trip back from California, | was thinking “ What did | get myself into? 1I've never
spoke in front of a bunch of people before! What if | make afool of myself? What if what | speak about is common
knowledge? Those people pay good money to attend thisconference.” For thenext six months, | prepared my lecture.
At the conference, | had about 70+ attendees. In the first twenty minutes| must have lost one pound of sweat. After
my lecture, | had a crowd of about 15 or so people come up to me and say that they were very pleased with the lecture
and liked my book. | got re-invited back to the conference but could not attend the one in Santa Clarathat year (i.e.
1993). | was able to attend the next conference in Boston (1994) and | have been aregular speaker at ESC ever since.
For the past couple of years, |'ve been on the conference Advisory Committee. | now do at least 3 lectures at every
conference and each have average attendance of between 200 and 300 people! My lectures are almost always ranked
amongst the top 10% of the conference.

To date, we sold well over 15,000 copies or p C/OS, The Real-Time Kernel around the world. | received and answered
well over 1000 e-mails from the following countries:

In 1995, u C/OS, The Real-Time Kernel was translated in Japanese and published in a magazine called Interfacein
Japan. p C/OS has been ported to the following processors:

Analog Devices AD21xx

Advanced Risc Machines ARM6, ARM7

Hitachi 64180, H8/3xx, SH series

Intel 80x86 (Real and PM), Pentium, Pentiumil|, 8051, 8052, MCS-251, 80196, 8096
Mitsubishi M16 and M 32



Motorola PowerPC, 68K, CPU32, CPU32+, 68HC11, 68HC16
Philips XA
Siemens 80C166 and TriCore
Texasinstruments TM S320
Zilog Z-80 and Z-180
And more.

In 1994, | decided to write my second book: Embedded Systems Building Blocks, Complete and Ready-to-Use
Modules in C (ESBB) and contains over 600 pages. For some reason, ESBB has not been as popular as p C/OS
although it contains as much valuable information not found anywhere else. | always thought that it would be anidedl
book for people just starting in the embedded world.

In 1998, | opened the official p C/OS WEB site www.uCOS-11.com | intend this site to contain ports, application
notes, links, answersto frequently asked questions (FAQs), upgrades for both p C/OS and pu C/OS-I1, and more. All |
need istimel

Back in 1992, | never imagined that writing an article would have changed my life as it did. | met alot of very
interesting people and made anumber of good friendsin the process. | still answer every single e-mail that | receive.
| believe that if you take the time to write to me then | owe you aresponse. | hope you enjoy this book.
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| ntroduction

This book describes the design and implementation of nC/OS-11 (pronounced "Micro C O S 2") which stands for
Micro-Controller Operating System Version 2. p C/OS-11 is based on uC/OS, The Real-Time Kernel which was first
published in 1992. Thousands of people around the world are using 1 C/OS in al kinds of applications such as
cameras, medical instruments, musical instruments, engine controls, network adapters, highway telephone call boxes,
ATM machines, industrial robots, and many more. Nu merous colleges and Universities have also used p C/OS to
teach students about real-time systems.

HC/OSHI is upward compatible with p C/OS (V1.11) but provides many improvements over i C/OS such as the
addition of a fixed-sized memory manager, user definable callouts on task creation, task deletion, task switch and
system tick, supports TCB extensions, stack checking and, much more. | also added comments to just about every
function and | made p C/OS-I1 much easier to port to different processors. Thesource codein p C/OSwasfound intwo
sourcefiles. Because u C/OS 11 contains many new features and functions, | decided to split p C/OS-I1 in afew source
filesto make the code easier to maintain.

If you currently have an application (i.e. product) that runs with p C/OS, your application should be able to run,
virtually unchanged, with p C/OS-11. All of the services (i.e. function calls) provided by pu C/OS have been preserved.
Y ou may, however, have to change include files and product build filesto ‘point’ to the new file names.

Thisbook contains ALL the source code for p C/OS-11 and a port for the Intel 80x86 processor running in Real-Mode
and for the Large Model . The code was developed on a PC running the Microsoft Windows 95 operating system.

Examples run in a DOS compatible box under the Windows 95 environment. Development was done using the
Borland International C/C++ compiler version 3.1. Although p C/OS-11 was devel oped and tested on a PC, nC/OS |

was actually targeted for embedded systems and can easily be ported to many different processor architectures.

UC/OS || features:

Source Code;

As| mentioned previously, this book contains ALL the source code for mC/OS-11. | went through alot of efforts to
provide you with a high quality ‘product’. You may not agree with some of the style constructs that | use but you
should agree that the code is both clean and very consistent. Many commercial real-time kernels are provided in
source form. | challenge you to find any such code that is as neat, consistent, well commented and organized as
M C/OSHI's. Also, | believe that simply giving you the source code is not enough. Y ou need to know how the code
works and how the different piecesfit together. Y ou will find thistype of information in thisbook. The organization
of areal-time kernel is not always apparent by staring at many source files and thousands of lines of code.

Portable:

Most of mC/OS-11 iswritten in highly portable ANSI C, with target microprocessor specific code written in assembly
language. Assembly language is kept to a minimum to make p C/OS-I1 easy to port to other processors. Like p C/OS,
M C/OS- 1 can be ported to alarge number of microprocessors as long as the microprocessor provides a stack pointer
and the CPU registers can be pushed onto and popped from the stack. Also, the C compiler should either provide
in-line assembly or language extensions that allow you to enable and disable interrupts from C. p C/OS-I1 can run on
most 8-bit, 16-bit, 32-bit or even 64-bit microprocessors or micro-controllers and, DSPs.

All the ports that currently exist for u C/OS can be easily converted to yu C/OS-11 in about an hour. Also, because
M C/OSH 1 isupward compatiblewith p C/OS, your p C/OS applications should run on pu C/OS-1 1 with few or no changes.
Check for the availability of portson the u C/OS-11 Web site at “www.uCOS-Il.com’.



ROMable:
M C/OS-1 was designed for embedded applications. This meansthat if you have the proper tool chain (i.e. C compiler,
assembler and linker/locator), you can embed p C/OS-I| as part of a product.

Scalable:

| designed L C/OS 1 so that you can use only the services that you need in your application. This meansthat a product
can have just afew of u C/OS1’s services while another product can have the full set of features. Thisallowsyou to
reduce the amount of memory (both RAM and ROM) needed by 1 C/OS1 on a product per product basis. Scalability
is accomplished with the use of conditional compilation. You simply specify (through #def i ne constants) which
features you need for your application/product. | did everything | could to reduce both the code and data space
required by p C/OSHI.



Preemptive:
M C/OSH I isafully-preemptive real-timekernel. Thismeansthat i C/OS- 1 alwaysrunsthehighest priority task that is
ready. Most commercial kernels are preemptive and L C/OS-I| is comparable in performance with many of them.

Multitasking:

p C/OS-I1 can manage up to 64 tasks, however, the current version of the software reserves eight (8) of these tasks for
system use. This leaves your application with up to 56 tasks. Each task has a unique priority assigned to it which
means that | C/OSH1 cannot do round robin scheduling. There are thus 64 priority levels.

Deterministic:

Executiontime of al p C/OS 11 functions and services are deterministic. This meansthat you can always know how
much time p C/OS-I 1 will take to execute afunction or aservice. Furthermore, except for one service, execution time
of dl p C/OSH| services do not depend on the number of tasks running in your application.

Task stacks:

Eachtask requiresitsown stack, however, u C/OS-11 allowseach task to have adifferent stack size. Thisallowsyouto
reduce the amount of RAM needed in your application. With p C/OS-11's stack checking feature, you can determine
exactly how much stack space each task actually requires.

Services:
nC/OS-11 provides a number of system services such as mailboxes, queues, semaphores, fixed-sized memory
partitions, time related functions, etc.

Interrupt Management:
Interrupts can suspend the execution of atask and, if ahigher priority task is awakened as aresult of the interrupt, the
highest priority task will run as soon as all nested interrupts complete. Interrupts can be nested up to 255 levels deep.

Robust and rdiable;
p C/OSH1 isbased on p C/OS which has been used in hundreds of commercial applicationssince 1992. p C/OS-11 uses
the same core and most of the same functions as u C/OS yet offers more features.



Figures, Listings and Tables Convention:

Y ou will notice that when | reference a specific element in afigure, | usethe letter *F followed by the figure number.
A number in parenthesis following the figure number represents a specific element in the figure that | am trying to
bring your attention to. F1-2(3) thus meanslook at the third item in Figure 1-2.

Listings and tables work exactly the same way except that alisting start with the letter ‘' L’ and atable with the letter
T

Sour ce Code Conventions:;

All pC/OS 11 objects (functions, variables, #def i ne constants and macros) start with G5 indicating that they are
Operating Systemrelated.

Functions are found in alphabetical order in al the source codefiles. Thisallowsyou to quickly locate any function.

You will find the coding style | useisvery consistent. | have been adopting the K&R style for many years. However,
| did add some of my own enhancements to make the code (I believe) easier to read and maintain. Indention is always
4 spaces, TABsarenever used, alwaysat | east one space around an operator, commentsare alwaysto theright of code,
comment blocks are used to describe functions, etc.

Thefollowing table providesthe acronyms, abbreviations and mnemonics (AAMs) used in thisbook. | combine some
of these AAMsto make up function, variable and #def i ne namesin ahierarchical way. For example, the function
OSMboxCr eat e() reads like this: the function is part of the operating system (OS), it is related to the mailbox
services (Mbox) and the operation performed isto Cr eat e amailbox. Also, all servicesthat have similar operation
share the same name. For example, OSSenCr eat e() and OSMboxCr eat e() perform the same operation but on

their respective objects (i.e. semaphore and mailbox, respectively).



Acronym,

Abbreviation or |Meaning
Mnemonic

Addr Address

Blk Block

Chk Check

Clr Clear

Cnt Count

CPU Central Processing Unit
Ctr Counter

Ctx Context

Cur Current

Del Delete

Dly Delay

Err Error

Ext Extension

EP Floating-Point
Grp Group

HMSM Hours Minutes Seconds Milliseconds
1D Identifier

Init Initialize

Int Interrupt

ISR Interrupt Service Routine
Max Maximum

Mbox Mailbox

Mem Memory

Msg Message

N Number of

Opt Option

(OS] Operating System
Ovf Overflow

Prio Priority

Ptr Pointer

Q Queue

Rdy Ready

Reg Request

Sched Scheduler

Sem Semaphore

Stat Status or statistic
Stk Stack

Sw Switch

Sys System

Thl Table

TCB Task Control Block
TO Timeout

Acronyms, abbreviations and mnemonics used in this book




Chapter contents:

Chapter 1, Sample Code

This chapter is designed to allow you to quickly experiment with and use u C/OS-11. The chapter starts by showing
you how to install the distribution diskette and describe the directories created. | then explain some of the coding
conventions used. Before getting into the description of the examples, | describe the code used to access some of the
services provided on aPC.

Chapter 2, Real-Time Systems Concepts

Here, | introduce you to some real-time systems concepts such as foreground/background systems, critical sections,
resources, multitasking, context switching, scheduling, reentrancy, task priorities, mutual exclusion, semaphores,
intertask communications, interrupts and more.

Chapter 3, Kernel Structure

This chapter introduces you to nC/OS-I1 and itsinternal structure. Y ou will learn about tasks, task states, task control
blocks, how p C/OS-11 implements a ready list, task scheduling, the idle task, how to determine CPU usage, how
p C/OSII handlesinterrupts, how to initialize and start p C/OS|11 and more.

Chapter 4, Task Management
This chapter describes p C/OS-I1's services to create a task, delete a task, check the size of atask’s stack, change a
task’s priority, suspend and resume atask, and get information about a task.

Chapter 5, Time Management
This chapter describes how L C/OS-11 can suspend atask’s execution until some user specified time expires, how such
atask can be resumed and how to get and set the current value of a 32-bit tick counter.

Chapter 6, Intertask Communication and Synchronization

This chapter describes 1 C/OSH 1’ s services to have tasks and | SRs (I nterrupt Service Routines) communicate with one
another and share resources. You will learn how sempahores, message mailboxes and message queues are
implemented.

Chapter 7, Memory M anagement
This chapter describes u C/OS1I’s dynamic memory allocation feature using fixed-sized memory blocks.

Chapter 8, Porting u C/OS-I1
This chapter describes in general terms what needs to be done to adapt p C/OS|1 to different processor architectures.



Chapter 9, 80x86 L arge Model Port

This chapter describes how p C/OS 11 was ported to the Intel/AMD 80x86 processor architecture running in real-mode
and for the large model. Code and data space memory usage is provided as well as execution times for each of the
functions.

Chapter 10, Upgrading from p C/OSto p C/OS-l|
This chapter describes how easy it isto migrate a port done for p C/OS to work with p C/OSHI.

Chapter 11, Reference Manual

This chapter describes each of the functions (i.e. services) provided by p C/OS-II from an application developer’s
standpoint. Each function contains a brief description, its prototype, the name of the file where the function is found,
adescription of the function arguments and the return value, special notes and examples.

Chapter 12, Configuration Manual

This chapter describes each of the #define constants used to configure p C/OSII for your application. Configuring
HC/OSH 1 alows you to use only the services required by your application. This gives you the flexibility to reduce
p C/OSI1’s memory footprint (code and data space).

Appendix A, Example Source Code
Fully commented source code for the examples and PC services (see Chapter 1) is provided in this appendix and

consist of 11 files.

Appendix B, p C/OS-11 Microprocessor | ndependent Sour ce Code
The source code for the portion of pu C/OS-II that is not dependent on any specific processor is provided in this
appendix and consist of 9 files

Appendix C, 80x86 Real-Mode, Large Modd Sour ce Code
The source code for the 80x86 processor dependent functionsisfound in this appendix and consist of threefiles.

Appendix D, TOand HPLISTC

Presentstwo DOS utilitiesthat | use: TO and HPLISTC. TOisautility that | use to quickly move between MS-DOS
directorieswithout having to typethe CD (changedirectory) command. HPLISTCisautility to print C source codein
compressed mode (i.e. 17 CPIl) and allows you to specify page breaks. The printout is assumed to be to a Hewlett
Packard (HP) Laserjet type printer.

Appendix E, Bibliography
This section provides a bibliography of reference material that you may find useful if you are interested in getting
further information about embedded real-time systems.

Appendix F, Licensing
Describesthe licensing policy for distributing u C/OS-11 in source and object form.

UC/OS || Web site:

To better support you, | created the p C/OS-11 WEB site (www.uCOS-11.com). You can thus obtain information
about:

Newson p C/OSand u C/ OSHI,

Upgrades,

Bug fixes,

Availability of ports,

Answersto frequently asked questions (FAQs),
Application notes,

Books,

Classes,



Linksto other WEB sites, and
More.



Chapter 1.
Sample Code

This chapter provides you with three examples on how to use iu C/OS-II. | decided to include this chapter
early in the book to allow you to start using 1 C/OS-11 as soon as possible. Before getting into the examples,
however, | will describe some of the conventions | use throughout this book.

The sample code was compiled using the Borland International C/C++ compiler V3.1 and options were
selected to generate code for an Intel/AMD 80186 processor (Large memory model). The code was actually
ran and tested on a 300 MHz Intel Pentiumtl| based PC with can be viewed as a super fast 80186 processor
(at least for my purpose). | chose a PC as my target system for a number of reasons. First and foremost, it's
alot easier to test code on a PC than on any other embedded environment (i.e., evaluation board, emulator
etc.): there are no EPROMs to burn, no downloads to EPROM emulators, CPU emulators, etc. You simply
compile, link, and run. Second, the 80186 object code (Real Mode, Large Model) generated using the
Borland C/C++ compiler is compatible with al 80x86 derivative processors from Intel, AMD or Cyrix.



1.00 Ingtalling p C/OS 1

R & D Publications, Inc. has included a Companion Diskette to p C/OS-11, The Real-Time Kernel. The
disketteisin MS-DOS format and contains all the source code provided in this book. It isassumed that you
have a DOS or Windows 95 based computer system running on an 80x86, Pentium or Pentiumtl| processor.
You will need less than about 5 Mbytes of free disk space to install p C/OS-11 and its source files on your
system.

Before starting the installation, make a backup copy of the companion diskette. Toinstall the code provided
on the companion diskette, follow these steps:

1) Load DOS (or open aDOS box in Windows 95) and specify the C: drive as the default drive.
Insert the companion diskettein drive A:
Enter A:INSTALL [drive]

Note that [drive]isan optional drive letter indicating the destination disk on which the source code provided
in this book will beinstalled. If you do not specify adrive, the source code will be installed on the current
drive.

| NSTALL is a DOS batch file called | NSTALL. BAT and is found in the root directory of the
companion diskette. | NSTALL. BAT will createa\ SOFTWARE directory on the specified destination
drive. | NSTALL. BAT will then change the directory to \ SOFTWARE and copy the file
uCGoSs- | | . EXE from the A: drive to this directory. | NSTALL. BAT will then execute
uCGOS- | | . EXE, whichwill create all other directories under\ SOFTWARE and transfer all source and
executablefilesprovided in thisbook. Upon completion,| NSTALL. BAT will deleteuCOS- | | . EXE
and change the directory to \SOFTWARE\ uCOS- | | \ EX1_x86L where the first example code is
found.

Make sure you read the READ. ME file on the companion diskette for last minute changes and notes.



Oncel NSTALL. BAT hascompleted, your destination drive will contain the following subdirectories:

\ SOFTWARE
The main directory from the root where all software-related files are placed.

\ SOFTWARE\ BLOCKS
The main directory where all * Building Blocks' are located. With p C/OS-11, | included a *building
block’ that handles DOS-type compatible functions that are used by the example code.

\ SOFTWARE\ BLOCKS\ TO

This directory contains the files for the TO utility (see Appendix E, TO). The sourcefileisTO. C
and is found in the \ SOFTWARE\ TO\ SOURCE directory. The DOS executable file
(TO. EXE) isfound in the \ SOFTWARE\ TO\ EXE directory. Note that TO requires a file
caled TO. TBL which must reside on your root directory. An exampleof TO. TBL isaso found
inthe \ SOFTWARE\ TO\ EXE directory. You will need to move TO. TBL to the root
directory if you aretouse TO. EXE.

\ SOFTWARE\ uCGCs- | |
Themain directory whereall p C/OS-1 files are located.

\ SOFTWARE\ uCOS- | I\ EX1_x86L

This directory contains the source code for EXAMPLE #1 (see section 1.07, Example #1) which is
intended to run under DOS (or a DOS window under Windows 95).

\ SOFTWARE\ uCOS- | I\ EX2_x86L

This directory contains the source code for EXAMPLE #2 (see section 1.08, Example #2) which is
intended to run under DOS (or a DOS window under Windows 95).

\ SOFTWARE\ uCOS- | I\ EX3_x86L

This directory contains the source code for EXAMPLE #3 (see section 1.09, Example #3) which is
intended to run under DOS (or a DOS window under Windows 95).

\ SOFTWARE\ uCOS- | I\ 1 x86L

This directory contains the source code for the processor dependent code (a.k.a. the port) of
M C/OSHI for an 80x86 Real-Mode, Large Model processor.

\ SOFTWARE\ uCOS- | I\ SOURCE

Thisdirectory containsthe source codefor processor independent portion of  C/OS1I. Thiscodeis
fully portable to other processor architectures.

1.01 INCLUDESH

Y ou will notice that every .C filein this book contains the following declaration:

| #i ncl ude "incl udes. h"




| NCLUDES. Hallowsevery .Cfilein your project to be written without concern about which header file
will actually beincluded. In other words, | NCLUDES. HisaMaster include file. The only drawback is
that | NCLUDES. Hincludes header filesthat are not pertinent to some of the .C file being compiled. This
means that each file will require extra time to compile. This inconvenience is offset by code portability.
There is an | NCLUDES. H for every example provided in this book. In other words, you will find a
different  copy of I NCLUDES.H in \ SOFTWARE\ uCOS- 11\ EX1_x86L,
\ SOFTWARE\ uCOS- | I \EX2_x86L and \ SOFTWARE\ uCOS- | | \ EX3_x86L. You
can certainly edit| NCLUDES. Hto add your own header files.

1.02 Compiler I ndependent Data Types

Because different microprocessors have different word length, the port of p C/OS11 includes a series of type
definitions that ensures portability (see \ SOFTWARE\ uCOS- 1 | \ | x86L\ OS_CPU. H for the
80x86 real-mode, large model). Specifically, p C/OS-11's code never makes use of C'sShort i nt and,
| ong data types because they are inherently non-portable. Instead, | defined integer data types that are
both portable and intuitive as shown in listing 1.1. Also, for convenience, | have included floating-point data
types even though p C/OS-11 doesn’t make use of floating-point.



t ypedef unsigned char BOCLEAN,
typedef unsigned char | NT8U,
typedef signed char |NT8S;

t ypedef unsigned int I NT16U;
t ypedef si gned i nt I NT16S;
typedef unsigned | ong | NT32U;
t ypedef si gned long | NT32S;

t ypedef fl oat FP32;
t ypedef doubl e FP64;
#def i ne BYTE | NT8S
#def i ne UBYTE I NT8U
#defi ne WORD I NT16S
#defi ne UWORD I NT16U
#defi ne LONG I NT32S
#defi ne ULONG I NT32U

Listing 1.1, Portable data types.

The | NT16U data type, for example, always represents a 16-bit unsigned integer. p C/OS-I1 and your
application code can now assume that the range of values for variables declared with this type is from 0 to
65535. A PC/OS-II port to a 32-bit processor could mean that an | NT16U would be declared as an
unsi gned short instead of anunsi gned i Nt . Whereu C/OS-11 is concerned, however, it still
deals with an | NT16U. Listing 1.1 provides the declarations for the 80x86 and the Borland C/C++
compiler asan example.

For backward compatibility with u C/OS, | also defined the data types BYTE, WORD, L ONG (and their
unsigned variations). Thisallows you to migrate u C/OS codeto p C/OS- 11 without changing all instances of
the old datatypesto the new datatypes. | decided to make thistransition and break away from the old style
data types because | believe that this new scheme makes more sense and is more obvious. A WORDto some
people may mean a 32-bit value whereas | originally intended it to mean a 16-bit value. With the new data
types, there should be no more confusion.

1.03 Global Variables

Following is atechnique that | useto declare global variables. Asyou know, aglobal variable needsto be
allocated storage space in RAM and must be referenced by other modules using the C keyword extern.
Declarations must thus be placed in both the .C and the .H files. This duplication of declarations, however,
can lead to mistakes. The technique described in this section only requires a single declaration in the header
file, but isalittle tricky to understand. However, once you know how this technique works you will apply it
mechanically.

Inall .H filesthat define global variables, you will find the following declaration:;

#i f def XxXX_GLOBALS
#defi ne xxx_EXT
#el se




#define xxx_EXT extern
#endi f

Listing 1.2, Defining global macr os.

Each variable that needs to be declared global will be prefixed with XXX __EXT in the .H file. ‘xxx’
represents a prefix identifying the module name. The modul€'s .C file will contain the following declaration:

#define xxx_G.OBALS
#i ncl ude "incl udes. h"

When the compiler processes the .C file it forces XXX__EXT (found in the corresponding .H file) to
"nothing" (because XXX _GLOBALS is defined) and thus each global variable will be allocated storage
space. When the compiler processes the other .C files, XXX __GLOBALS will not be defined and thus
XXX _EXT will besettoext er n, allowing youtoreferencetheglobal variable. Toillustratethe concept,
let'slook at UCOS | | . Hwhich contains the following declarations:

#i f def oS GLOBALS
#define OS_EXT

#el se

#define OS EXT extern

#endi f

CS_EXT | NT32U sl dl eGr

OS_EXT | NT32U sl dl eCGr Run;
OS_EXT | NT32U Sl dl eCtr Max;
UCOS_| | . ¢ containsthe following declarations:

#define OS GLOBALS
#i ncl ude “incl udes. h”

When the compiler processes UCOS | | . C it makes the header file UCOS | | . H) appear as shown
below because OS_EXT isset to "nothing":




| NT32U Sl dl eCir
| NT32U Csl dl eCtr Run;
| NT32U sl dl eCr Max;

The compiler is thus told to allocate storage for these variables. When the compiler processes any other .C
files, the header file UCOS_I | . H) looks as shown below because OS_GLOBAL Sis not defined and
thus OS_EXT isset to extern.

extern | NT32U CSldleCr
extern | NT32U sl dl eCr Run;
extern | NT32U sl dl eCr Vax;

In this case, no storage is allocated and any .C file can access these variables. The nice thing about this
techniqueisthat the declaration for the variablesis done in only onefile, the .H file.

1.04 OS ENTER_CRITICAL() and OS_EXIT_CRITICAL()

Throughout the source code provided in this book, you will see calls to the following macros:
OS_ENTER_CRI TI CAL() andOS_EXI T_CRI Tl CAL(). OS_ENTER_CRI Tl CAL()

is a macro that disables interrupts and OS_EXI T_CRI Tl CAL() isamacro that enables interrupts.
Disabling and enabling interrupts is done to protect critical sections of code. These macros are obviously
processor specific and aredifferent for each processor. These macrosarefound inOS_ CPU. H. Listing 1.3

shows the declarations of these macros for the 80x86 processor. Section 9.03.02 discusses why there are two
ways of declaring these macros.

#define OS CR TI CAL_METHOD 2

#i f OS_CRI Tl CAL_METHOD ==
#define OS ENTER CRITICAL() asm CLI
#define OS EXIT CRITI CAL() asm STI
#endi f

#if OS5 _CRI Tl CAL_METHOD ==

#define OS_ENTER CRITICAL() asm {PUSHF, CLI}
#define OS_EXI T_CRI Tl CAL() asm POPF

#endi f

Listing 1.3, Macrosto access critical sections.

Y our application code can make use of these macros aslong as you realize that they are used to disable and
enableinterrupts. Disabling interrupts obviously affect interrupt latency so be careful. Y ou can also protect
critical sections using semaphores.

1.05 PC Based Services




The files PC. Cand PC. H(inthe \ SOFTWARE\ BLOCKS\ PC\ SOURCE directory) contain PC

compatible servicesthat | used throughout the examples. Unlikethefirst version of u C/OS I (i.e. u C/OS), |
decided to encapsul ate these functions (as they should have been) to avoid redefining them in every example

and also, to allow you to easily adapt the code to adifferent compiler. PC. Cbasically contains three types
of services: character based display, elapsed time measurement and, miscellaneous. All functions start with
theprefix PC_.

1.05.01 PC Based Services, Character Based Display

The display functions perform direct writes to video RAM for performance reasons. On a VGA monitor,
video memory darts at absolute memory location 0x000B8000 (or using a segment:offset notation,
B800:0000). You can use this code on a monochrome monitor by changing the #def i ne constant

DI SP_ BASE from 0xB800 to 0xBO0O.

The display functionsin PC. C are used to write ASCII (and special) characters anywhere on the screen
using X and Y coordinates. A PC’s display can hold up to 2000 characters organized as 25 rows (i.e. Y) by
80 columns (i.e. X). Each character requires two bytes to display. The first byte is the character that you
want to display while the second byte is an attribute that determines the foreground/background color
combination of the character. The foreground color is specified in the lower 4 bits of the attribute while the
background color appears in bits 4 to 6. Finally, the most-significant bit determines whether the character

will blink (when 1) or not (when 0). Y ou should use the #def i ne constants declared inPC. C (FGND
means foreground and BGND is background). PC. C contains the following four functions:

PC_Di spClrScr() Toclear the screen

PC_Di spCl rLi ne() Todear asinglerow (or line)

PC_Di spChar () To display asingle ASCII character anywhere on the screen
PC_Di spStr () To display an ASCII string anywhere on the screen



1.05.02 PC Based Services, Elapsed Time Measurement

The elapsed time measurement functions are used to determine how much time a function takes to execute.
Time measurement is performed by using the PC's 82C54 timer #2. You make time measurement by

wrapping the code to measure by the two functions PC_El apsedStart() and
PC_El apsedSt op() . However, beforeyou can usethesetwo functions, you need to call thefunction
PC El apsedl nit().PC_El apsedl nit () basically computesthe overhead associated with
the other two functions. This way, the execution time returned by PC_El apsedSt op() consist
exclusively of the codeyou are measuring. Notethat none of these functions are reentrant and thus, you must
be careful that you do not invoke them from multiple tasks at the same time. The example in listing 1.4
shows how you could measure the execution time of PC_Di spChar (). Note that time is in
microseconds (U S).

I NT16U ti me;
PC El apsedlnit();
PC _El apsedStart();

PC Di spChar (40, 24, ‘A, DI SP_FG\D WH TE);
time = PC_HEl apsedStop();

Listing 1.4, M easuring code execution time,

1.05.03 PC Based Services, Miscdlaneous

A C/OS || application looksjust like any other DOS application. In other words, you compileand link your
codejust asif you would do asingle threaded application running under DOS. The .EXE filethat you create

is loaded and executed by DOS and execution of your application startsfrom mai n( ) . Becauseu C/OS-I|
performs multitasking and needs to create a stack for each task, the single threaded DOS environment must
be stored in case your application wishesto quit 1 C/OS-11, and return to DOS. Saving the DOS environment
is done by callingPC_DOSSaveRet ur n() . When your application needs to return to DOS (and exit
1 C/OS-11), you simply call PC_DOSRet ur n( ) . PC. Cmakesuseof the ANSI Cset j np() and
| ongj np() functions to save and restore the DOS environment, respectively. These functions are
provided by the Borland C/C++ compiler library and should be available on most other compilers.

Y ou should note that a crashed application or invokingeXi t ( 0) without usingPC_DOSRet ur n()

can leave DOSis a corrupted state. This may lead to a crash of DOS, or the DOS window within Windows
95.

PC_Get Dat eTi me( ) is a function that obtains the PC’s current date and time, and formats this
information into an ASCII string. Theformatis“MM-DD-YY HH:MM:SS’ ar]d you will need at least 19
characters (including the NUL character) to hold this string. PC_Get Dat eTi me() uses the Borland




CI/C++ library functionsget t i me() andget dat e() which should have their equivalent on other
DOS compilers.

PC _Get Key() isafunction that checks to see if a key was pressed and if so, obtains that key, and
returns it to the caller. PC_Get Key() uses the Borland C/C++ library functions kbhi t () and
get ch() whichagain, have their equivalent on other DOS compilers.

PC_Set Ti ckRat e() allows you to change the tick rate for u C/OS 11 by specifying the desired
frequency. Under DOS, atick occurs 18.20648 times per second or, every 54.925 mS. Thisis becausethe
82C54 chip used didn't get its counter initialized and the default value of 65535 takes effect. Had the chip
been initialized with a divide by 59659, the tick rate would have been avery nice 20.000 Hz! | decided to
change the tick rate to something more ‘exciting’ and thus, decided to use about 200 Hz (actually 199.9966).
Y ou will note that the function OSTi ckl SR() foundinOS_CPU_A. ASMcontains codeto call the
DOStick handler onetime out of 11. Thisisdoneto ensure that some of the housekeeping needed in DOS is
maintained. Y ou would not need to do thisif you were to set thetick rateto 20 Hz. Before returning to DOS,
PC_Set Ti ckRat e() iscalled by specifying 18 asthe desired frequency. PC_Set Ti ckRat e()
will know that you actually mean 18.2 Hz and will correctly set the 82C54.

The last two functions in PC. C are used to get and set an interrupt vector. Again, | used Borland C/C++

library functions do accomplish this but, the PC_Vect Get () and PC_Vect Set () caneasily be
changed to accommo date a different compiler.

1.06 u C/OS |1 Examples

The examples provided in this chapter was compiled using the Borland C/C++ V3.1 compiler in aDOS box
on a Windows 95 platform. The executable code is found in the OBJ subdirectory of each example's
directory. The code was actually compiled under the Borland IDE (Integrated Development Environment)
with the following options:



Compiler:
Code generation:
Model
Options
Assume SS Equals DS

Advanced code generation:

Floating point
Instruction set
Options

Optimizations:
Optimizations:

: Large

: Treat enums asints
: Default for memory model

: Emulation
: 80186

: Generate underbars

Debug infoin OBJs
Fast floating point

Global register alocation
Invariant code motion
Induction variables

L oop optimization

Suppress redundant loads

Copy propagation

Dead code elimination

Jump optimization

Inline intrinsic functions

Register variables:
Automatic

Common subexpressions:
Optimize globally

Optimizefor:
Speed

It is assumed that the Borland C/C++ compiler isinstalled in the C. \ CPP directory. If your compiler is
located in adifferent directory, you will need to change the path in the Options/Directories menu of the IDE.

K C/OS- | isascal able operating system which meansthat the code size of u C/OS-11 can bereduced if you are
not using all of its services. Code reduction is done by setting the #def i nes OS_??? ENto0in
OS_CFG H. You do this to disable code generation for the services that you will not be using. The
examples in this chapter makes use of this feature and thus, each example declares their OS_?7?7?_ EN

appropriately.



1.07 Example #1

The first example is found in \ SOFTWARE\ uCOS- | | \ EX1_Xx86L and basicaly consists of 13
tasks (including p C/OS-11's idle task). u C/OS-I1 creates two ‘internal’ tasks: the idle task and atask that
determines CPU usage. Example #1 creates 11 other tasks. The TaskSt art () task is created by
mai n() anditsfunctionisto create the other tasks and display the following statistics on the screen:

1) thenumber of task switchesin one second,
2) theCPU usagein %,

3) thenumber of context switches,

4)  thecurrent date and time, and

5 uCOSII'sversion.

TheTaskSt art () task aso checks to seeif you pressed the ESCAPE key indicating your desire to exit
the example and return to DOS.

The other 10 tasks are based on the same code, i.e. the function Tas k() . Each of the 10 tasks displays a
number (each task hasits own number from O to 9) at random locations on the screen.

1.07.01 Example #1, main()

Example #1 does basically the same thing as the first example provided in the first edition of u C/OS,
however, | cleaned up some of the code and output to the screenisincolor. Also, | decidedto usetheold data
types (i.e. UBYTE, UNORD etc.) to show that i C/OS-1 is backward compatible.

A L C/OS-I| application looks just like any other DOS application. You compile and link your codejust asif
you would do a single threaded application running under DOS. Th_e .EXE filethat you createisloaded and
executed by DOS, and execution of your application starts from mai n( ) .



mai n() startsby clearing the screen to ensure we don’t have any characters | eft over from the previous
DOSsession L1.5(1). Notethat | specified to use white letters on a black background. Since the screen will
becleared, | could have simply specified to useablack background and not specify aforeground. If | didthis,
andyoudecidedtoreturnto DOSthenyouwould not seeanything onthescreen! It’sawaysbetter to specify
avisibleforeground just for this reason.

void main (void)

{ PC Di spd r Scr (DI SP_FGND WH TE + DI SP_BG\D_BLACK) ; (1)
cslnit(); (2)
PC_DCSSaveRet urn() ; (3)
PC Vect Set (uCOS, GSCt xSw) ; (4)
RandonBem = OSSenCreat e(1); (5)
CSTaskCr eat e( TaskSt art, (6)

(void *)O0,
(voi d *)&TaskStart St k| TASK_STK_SI ZE- 1],
0);
CsStart () ; (7)
}

Listing 1.5, main()

A requirement of u C/OS-11 isthat you callOSI ni t () L1.5(2) beforeyouinvokeany of itsother services.
OSI ni t () creates two tasks: an idle task which executes when no other task is ready-to-run and, a
statistic task which computes CPU usage.

The current DOS environment isthen saved by callingPC_DOSSaveRet ur n() L1.5(3). Thisallows
ustoreturnto DOSasif wehad never started i C/OS-11. A lot happensinPC_DOSSaveRet ur n() s
you may need to look at the codein listing 1.6 to follow along. PC_DOSSaveRet ur n() sartsby
setting the flag PC_EXi t FI ag to FALSE L1.6(1) indicating that we are not returning to DOS. Then,
PC _DOSSaveRet ur n() initializes OSTi ckDOSCt r to 1 L1.6(2) because this variable will be
decremented in OSTi ckl SR( ) . A value of 0 would have caused this value to wrap around to 255 when
decremented by OSTi ckl SR() . PC_DOSSaveRet ur n() then saves DOS'stick handler in a
free vector table L1.6(3)-(4) entry so it can be called by pC/OS-II's tick handler.  Next,
PC_DOSSaveRet urn() caissetj np() L1.6(5), which capturesthe state of the processor (i.e.,
the contents of all its registers) into a structure called PC_JunpBuf . Capturing the processor's context
will allow us to return to PC_DOSSaveRet ur n() and execute the code immediately following the
cal to setjnp(). Because PC ExitFlag was initidized to FALSE L1.6(),
PC_DOSSaveRet ur n() skipsthecodein theif statement (i.e. L1.6(6)-(9)) and returns to the caller
(i.,e.mai n() ). When you want to return to DOS, all you haveto doiscall PC_DOSRet ur n() (see
listing 1.7) which sets PC_EXxi t Fl ag to TRUE L1.7(1) and execute a | ongj np() L1.7(2). This
brings the processor back in PC_DOSSaveRet ur n() (just after the call to set j np( ) ) L1.6(5).
This time, however, PC_EXi t FI ag is TRUE and the code following the if statement is executed.

PC _DOSSaveRet ur n() changes the tick rate back to 18.2 Hz L1.6(6), restores the PC's tick ISR




handler L1.6(7), clears the screen L1.6(8) and returns to the DOS prompt through theeXi t ( 0) function
L16(9).

voi d PC DOSSaveRet urn (voi d)

{
PC ExitFlag = FALSE; (1)
CSTi ckDOsCrr = 8; (2)
PC Tickl SR = PC Vect Get (VECT_TI CK) ; (3)
OS_ENTER CRI Tl CAL();
PC Vect Set (VECT_DCS_CHAI N, PC Ti ckl SR); (4)
OS_EXI T_CRI Tl CAL() ;
set j np( PC_JunpBuf) ; (5)
if (PCExitFlag == TRUE) {
08 _ENTER CRI Tl CAL() ;
PC Set Ti ckRat e(18) ; (6)
PC Vect Set (VECT_TI CK, PC_Ti ckl SR); (7)
CS_EXI T_CRI Tl CAL() ;
PC Di spd rScr (D SP_FG\D WH TE + DI SP_BG\D BLACK); (8)
exit(0); (9)
}
}

Listing 1.6, Saving the DOS environment.

voi d PC DOSRet urn (voi d)

PC Exi t Fl ag = TRUE; (1)
| ongj np( PC_JunmpBuf, 1); (2)

Listing 1.7, Setting up to return to DOS,

Now we can go back to mai n( ) inlisting 1.5. mai n() then calls PC_Vect Set () L1.5(4)to
install p C/OS11's context switch handler. Task level context switching is done by issuing an 80x86 | NT

instruction to thisvector location. | decided to use vector 0x80 (i.e. 128) because it’s not used by either DOS
or the BIOS.

A binary semaphoreisthen created L 1.5(5) to guard access to the random number generator provided by the
Borland C/C++ library. | decided to use asemaphore because | didn’t know whether or not this function was
reentrant. | assumed it was not. Because | initialized the semaphoreto 1, | am indicating that only one task
can access the random number generator at any time.

Before starting multitasking, | create one task L1.5(6) called TaskSt art () . Itisvery important that
you create at |east one task before starting multitasking through OSSt ar t () L1.5(7). Failureto do this
will certainly make your application crash. Infact, you may always want to only create asingle task if you




are planning on using the CPU usage statistic task. 1 C/OS-II's statistic task assumes that no other task is
running for awholesecond. If, however, you need to create additional tasksbefore starting multitasking, you

must ensure that your task code will monitor the global variable OSSt at Rdy and delay execution (i.e.
call OSTi meDl y () ) until thisvariable becomes TRUE. Thisindicatesthat u C/OS-I1 has collected its
datafor CPU usage statistics.

1.07.02 Example #1, TaskStart()

A major portion of thework in example#1isdoneby Task St ar t () . Thepseudo-code for thisfunction
isshowninlisting 1.8. Thetask startsby displaying abanner ontop of the screenidentifying thisasexample
#1 L1.8(1). Next, we disable interrupts to change the tick ISR (Interrupt Service Routine) vector so that it
now pointsto L C/OS-I1’stick handler L1.8(2) and, change the tick rate from the default DOS 18.2 Hz to 200
Hz L1.8(3). We sure don’t want to beinterrupted whilein the process of changing an interrupt vector! Note
that mai N() purposely didn't set the interrupt vector to i C/OS-1'stick handler because you don't want a
tick interrupt to occur before the operating system is fully initialized and running. If you run code in an
embedded application, you should always enable the ticker (as | have done here) from within the first task.



void TaskStart (void *data)
{
Prevent conpiler warning by assigning ‘data’ to itself;
Di spl ay banner identifying this as EXAMPLE #1; (1)

OS_ENTER CRI TI CAL() ;

PC Vect Set (0x08, OSTi ckl SR); (2)
PC_Set Ti ckRat e(200) ; (3)
OS_EXIT_CRI TI CAL() ;

Initialize the statistic task by calling ‘CsStatlnit()’; (4)

Create 10 identical tasks; (5)

for (5;) {
Di spl ay the nunber of tasks created;
Di splay the % of CPU used;
Di spl ay the nunber of task switches in 1 second;
Display uC GCs-11’s version nunber
if (key was pressed) {
if (key pressed was the ESCAPE key) ({
PC_DCSRet urn();
}
}

Delay for 1 Second;

Listing 1.8, Task that createsthe other tasks.

Before we create any other tasks, we need to determine how fast you particular PCis. Thisisdone by calling
OSStatlnit() L18@4). OSSt at | nit () isshowninlisting 1.9 and starts by delaying itself for
two clock ticks so that it can be synchronized to the tick interrupt L1.9(1). Because of this,
OSSt at I ni t () MUST occur after the ticker has been installed otherwise, your application will crash!
When p C/OS-11 returns control to OSSt at | ni t () , a32-bit counter called OSI dl eCt r s cleared
L 1.9(2) and another delay is initiated, which again suspendsOSSt at | ni t () . Atthispoint, u C/OS-II
doesn't have anything else to execute and thus decides to run the Idle Task (internal to u C/OS-11). Theidle
task is an infinite loop that increments OSI dl eCt r . Theidletask getsto increment this counter for one
full second L1.9(3). After one second, uC/OS-Il resumes OSStatlnit (), which saves
Sl dl eCt r inavariablecalled OSI dl eCt r Max L1.9¢4). OSI dl eCt r MaX now containsthe
largest value that OS| dl eCt r can ever reach. When you start adding application code, the idle task will
get less of the processor's time and thus, OSI dl eCt r will not be allowed to count as high (assuming we
will reset OSI dl eCt r every second). CPU utilizationiscomputed by atask provided by p C/OS-11 called
OSSt at Task( ) which executes every second.

void CSStatlnit (void)

{
CSTi meDl y(2) ; (1)




G5 _ENTER CRI TI CAL();

Sl dl eCtr = 0L; (2)
OS5 _EXIT_CRITI CAL() ;

OSTi meDl y(OS_TI CKS_PER_SEC) ; (3)
OS_ENTER CRI Tl CAL();

CSldleCtrMax = CSldleCr; (4)
CSSt at Rdy = TRUE; (5)

OS_EXI T_CRI TI CAL() ;

Listing 1.9, Determining the PC’ s speed.

1.07.03 Example #1, TaskN()

OSStat I nit() returns back to TaskSt art () and we can now create 10 identical tasks (all
running the same code) L1.8(5). TaskSt art () will createall thetasksand no context switch will occur
because TaskSt art () hasapriority of O (i.e. the highest priority). When all the tasks are created,
TaskSt art () enterstheinfinite loop portion of the task and continuously displays statistics on the
screen, checksto seeif the ESCAPE key was pressed and then delay for one second before starting the loop
again. If you press the escape key, TaskSt art () calsPC_DOSRet ur n() and we gracefully
return back to the DOS prompt.

Thetask codeisshowninlisting 1.10. When thetask getsto execute, it triesto acquire asemaphore L 1.10(1)
so that we can call the Borland C/C++ library function r andon( ) L1.10(2). | assumed here that the
random function is non-reentrant so, each of the 10 tasks must have exclusive access to this codein order to
proceed. Werel ease the semaphorewhen both X and Y coordinatesare obtained L1.10(3). Thetask displays
anumber (between ‘0 and ‘9’) which is passed to the task when it is created L1.10(4). Finally, each task
delaysitself for onetick L1.10(5) and thus, each task will execute 200 times per second! Withthe 10 task this
means that p C/OS-I1 will context switch between these tasks 2000 per second.




voi d Task (void *data)

{
UBYTE X;
UBYTE vy;
UBYTE err;
for (53) {
CSSenPend( RandonSem 0, &err); (1)
x = randon(80); (2)
y = randon{ 16);
CSSenPost ( Randonfen) ; (3)
PC D spChar(x, y + 5, *(char *)data, DI SP_FG\D LI GHT_GRAY); (4)
OSTi neDl y(1); (5)
}
}
Listing 1.10,
Task that digplays a number at random locations on the screen.
1.08 Example #2

Example #2 makes use of the extended task create function and p C/OS-II’s stack checking feature. Stack
checking is useful when you don’t actually know ahead of time how much stack space you need to allocate
for each task. Inthiscase, you allocate much more stack space than you think you need and you let u C/OS-I 1
tell you exactly how much stack spaceis actually used up. Y ou obviously need to run the application long
enough and under your worst case conditions to get proper numbers. Your final stack size should
accommodate for system expansion so make sure you allocate between 10 and 25% more. In safety critical
applications, however, you may even want to consider 100% more. What you should get from stack
checking isa‘balpark’ figure; you are not looking for an exact stack usage.

pHC/OS-11's stack checking function assumes that the stack is initially filled with zeros when the task is
created. You accomplish thisby tellingOSTask Cr eat e Ext () to clear the stack upon task creation
(i.e. you OR both OS_TASK_OPT_STK_CHK and OS_TASK_OPT_STK_CLR for the opt

argument). If youintend to create and delete tasks, you should set these options so that anew stack is cleared
every time the task is created. You should note that having OSTaskCr eat eExt () clear the stack
increases execution overhead which obviously dependsonthestack size. u C/OS-11 scansthe stack starting at

the bottom until it finds a non-zero entry (see figure 1-1). Asthe stack is scanned, u C/OS-I increments a
counter that indicates how many entries are free (Stack Free).




Bottom-Of-Stack > OXOOOO A A
0x0000
/OS-1l 'Scans' stack 0x0000
0x0000

Stack Free
0x0000 Stack Size
0x0000
T
Stack Growt Stack Used
L

Top-Of-Stack >

Figure 1-1 pC/OS|1 Stack checking

The second example is found in \ SOFTWARE\ uCOS- | | \ EX2_x86L and consists of atotal of 9
tasks. Again, W C/OS I creates two ‘internal’ tasks: the idle task and the task that determines CPU usage.
EX2L. Cecreatesthe other 7 tasks. Aswith example#1, TaskSt art () iscreated by mai n() and
itsfunction isto create the other tasks and display the following statistics on the screen:

1) thenumber of task switchesin one second,
2) theCPU usagein %,

3) thenumber of context switches,

4) thecurrent date and time, and

5 pCOSII'sversion.



1.08.01 Example #2, main()

mai N( ) looksjust like the code for example #1 (see listing 1.11) except for two small differences. First,
mai n() calsPC_El apsedl ni t () L111(1) toinitialize the elapsed time measurement function
whichwill beused to measuretheexecutiontimeof OSTaskSt kChk() . Second, all tasksare created
using the extended task create function instead of OSTaskCr eat e() L1.11(2). Thisalowsus, anong
other things, to perform stack checking on each task. In addition to the same four arguments needed by
OSTaskCreat e(), OSTaskCr eat eExt () requires five additional arguments: a task ID, a
pointer to the bottom of the stack, the stack size (in number of elements), apointer to a user supplied Task
Control Block (TCB) extension, and avariable used to specify optionsto thetask. One of the optionsis used
totell u C/OSHI that stack checking is allowed on the created task. Example #2 doesn’t make use of the TCB
(Task Control Block) extension pointer.

void main (void)

{ PC _Di spd r Scr (Dl SP_FGND_WHI TE + DI SP_BGN\D_BLACK) ;
CSlnit();
PC_DCSSaveRet urn() ;
PC Vect Set (uCCS, OSCt xSw) ;
PC El apsedlnit(); (1)
CSTaskCr eat eExt (TaskStart, (2)
(void *)0,
&TaskSt art St k[ TASK_STK_SI ZE- 1] ,
TASK_START_PRI O,
TASK_START_|I D,
&TaskStart St k[ 0],
TASK_STK_SI ZE,
(void *)O0,
O5_TASK OPT_STK CHK | OGS TASK OPT_STK CLR);
CsStart();
}

Listing 1.11, main() for example #2.




1.08.02 Example #2, TaskStart()

Listing 1.12 shows the pseudo code for Task St art () . Thefirst five operations are similar to those
found in example#1. TaskSt art () createstwo mailboxes that will be used by Task #4 and Task #5
L1.12(1). A task that will display the current date and time is created as well as five application tasks
L 1.12(20).

voi d TaskStart (void *data)
{

Prevent conpiler warning by assigning ‘data’ to itself;
Di spl ay a banner and non-changi ng text;
Install uC Cs-11's tick handler;
Change the tick rate to 200 Hz;
Initialize the statistics task;
Create 2 nmil boxes which are used by Task #4 and #5; (1)
Create a task that will display the date and tine on the screen; (2)
Create 5 application tasks;
for (;;) {

Di spl ay #tasks running;

Di splay CPU usage in %

Di spl ay #context switches per seconds;

O ear the context switch counter;

Display uC Cs-11’s version;

if (Key was pressed) {

if (Key pressed was the ESCAPE key) ({
Return to DGCS;
}
}

Del ay for 1 second;

Listing 1.12, Pseudo-code for TaskStart().

1.08.03 Example #2, TaskN()
The codefor Task1() checksthe size of the stack for each of the seven application tasks. The execution
time of OSTaskSt kChk() is measured L1.13(1)-(2) and displayed along with the stack size

information. Notethat all stack size data are displayed in number of bytes. Thistask executes 10 times per
second L1.13(3).




void Taskl (void *pdata)

{
| NT8U err;
CS_STK_DATA dat a;
I NT16U time;
| NT8U i;
char s[ 80] ;
pdata = pdat a;
for (5;) {
for (i =0; i <7; i++) {
PC _El apsedStart(); (1)
err = OSTaskSt kChk( TASK _START PRI O+i, &data);
tine = PC_El apsedSt op(); (2)
if (err == CS_NO ERR) {
sprintf(s, "9%3ld %3l d %3l d oBd",
dat a. OSFree + dat a. GSUsed,
dat a. OSFr ee,
dat a. OSUsed,
tine);
PC DispStr(19, 12+, s, DI SP_FGND YELLOW;
}
}
OsTi neDl yHVBM O, 0, 0, 100); (3)
}
}

Lising 1.13, Example #2, Task #1.

Task?2() displaysaclockwise rotating wheel on the screen. Each rotation completesin 200 mS (i.e. 4 x
10ticksx 5 mS/tick).

void Task2 (void *data)
{
data = dat a;
for (5;) {
PC Di spChar (70, 15, '|', DI SP_FG\D WH TE + DI SP_BG\D RED) ;
OSTi neDl y(10) ;
PC Di spChar (70, 15, '/', DI SP_FGND WH TE + DI SP_BG\D RED);
OSTi neDl y(10) ;
PC Di spChar (70, 15, '-', DI SP_FG\ND WH TE + DI SP_BG\D RED) ;
OSTi neDl y(10) ;
PC Di spChar (70, 15, '"\\', DI SP_FG\ND WH TE + DI SP_BG\D RED);
OSTi neDl y(10) ;

Listing 1.14, Rotating wheel task.




Task3() alsodisplaysarotating wheel but, the rotation isin the opposite direction. Also, Task3()
allocates storage on the stack. | decided to fill the dummy array to show that OSTask St KChk () takes
less time to determine stack usage when the stack is close to being fully used up L1.15(1).

void Task3 (void *dat a)

char dummy[ 500] ;
| NT16U i ;

data = dat a;

for (i =0; i < 499; i++) { (1)
dummy[i] ="7?";

}

for (5;) {
PC D spChar (70, 16, '|', DI SP_FG\ND WH TE + DI SP_BG\D BLUE);
OSTi meDl y( 20) ;
PC Di spChar (70, 16, '\\', DI SP_FG\D WH TE + DI SP_BG\D BLUE);
GOSTi neDl y(20) ;
PC Di spChar (70, 16, '-', DI SP_FGND WH TE + DI SP_BG\D BLUE);
OSTi meDl y(20) ;
PC Di spChar (70, 16, '/', DI SP_FG\ND WH TE + DI SP_BG\D BLUE);
GOSTi neDl y(20) ;

Listing 1.15, Rotating whed task.

Task4() sendsamessageto Task5() andwaitsfor an acknowledgement from Task5( ) L1.16(1).
The message sent is simply a pointer to acharacter. Every time Task4 (') receives an acknowledgement
from Task5() L1.16(2), Task4() increments the ASCII character value before sending the next
message L1.16(3). When Task5( ) receives the message L1.17(1) (i.e. the character) it displays the

character on the screen L1.17(2) and then waits one second L1.17(3) before acknowledging it to task #4
L1.17(4).




void Task4 (void *data)
{

char t XnsQ;

INT8U err;

dat a dat a;
txnmsg A
for (5;) {
while (txnsg <= 'Z") {
CSMboxPost ( TxMoox, (void *) &t xnsq) ; (1)
CSMboxPend( AckMbox, 0, &err); (2)
t Xnmeg++; (3)

txmsg = 'A';

Listing 1.16, Task #4 communicates with task #5.

void Task5 (void *data)
{

char *rxnsg;
I NT8U err;

data = dat a;

for (5:) {
rxmsg = (char *)CSMboxPend(TxMox, 0, &err); (1)
PC Di spChar (70, 18, *rxnsg, DI SP_FGND_YELLOMD SP_BG\D _RED); (2)
CSTi nreDl yHVSM 0, 0, 1, 0); (3)
OCSMhoxPost (AckMoox, (void *)1); (4)
}

Listing 1.17, Task #5 receives and displays a message.

TaskCl k(') (listing 1.18) is atask that displays the current date and time every second.



void Taskdk (void *data)

{
struct tine now,
struct date today;
char s[ 40] ;
data = dat a;
for (;;) {
PC Get Dat eTi nme(s) ;
PC Di spStr(0, 24, s, DI SP_FG\D BLUE + DI SP_BGND CYAN);
OSTi neDl y( OS_TI CKS_PER _SEC) ;
}
}
Listing 1.18, Clock display task.
1.09 Example #3

Example #3 demonstrates some additional features of p C/OS-11. Specifically, example #3 uses the TCB
(Task Control Block) extension capability of OSTask Cr eat eExt () , the user defined context switch
hook (OSTaskSwHooK () ), the user defined statistic task hook (OSTask St at Hook( ) ), and

message queues.

The third exampleis found in\ SOFTWARE\ uCOS- | | \ EX3_Xx86L and again, consists of atotal of
9 tasks. W C/OS-II creates two ‘internal’ tasks: the idle task and the task that determines (PU usage.
EX3L. Ccreatesthe other 7 tasks. Aswith examples#1 and#2, TaskSt art () iscreated by mai n()
and its function isto create the other tasks and display statistics on the screen.

1.09.01 Example #3, main()

mai n() (seelisting 1.19) looks just like the code for example #2 except that the task is given a name
which saved in a user defined TCB extension L1.19(1) (the declaration for the extension is found in
| NCLUDES. Hand shownin listing 1.20). | decided to allocate 30 characters for the task name (including
the NUL character) to show that you can have fairly descriptive task names L1.20(1). | disabled stack
checkingfor Task St ar t () becausewewill not be using that feature in this example L1.19(2).




void nmain (void)
{
PC Di spd r Scr (DI SP_FG\D WH TE + DI SP_BG\D BLACK) ;
Cslnit();
PC_DCSSaveRet urn() ;
PC Vect Set (uCOS, CSCt xSw) ;
PC El apsedlnit();

strcpy( TaskUser Dat a[ TASK_START | D] . TaskNane, "Start Task"); (1)
CSTaskCr eat eExt (TaskStart,

(void *)O0,

&TaskSt art St k[ TASK_STK_SI ZE- 1],

TASK_START_PRI O,

TASK_START_I D,

&TaskStart St k[ 0],

TASK_STK_SI ZE,

&TaskUser Dat a[ TASK_START | O],

0); (2)
CsStart () ;

Listing 1.19, main() for example #3.

typedef struct {
char TaskNare[ 30] ; (1)
I NT16U TaskCtr;
I NTA6U TaskExecTi ne;
I NT32U TaskTot ExecTi ne;
} TASK USER DATA;

Listing 1.20, TCB extension data structure.

1.09.02 Example #3, Tasks

The pseudo code for TaskSt art () is shown in listing 1.21. The code hasn’t changed much from
example #2 except for three things:

1) A message queueis created L1.21(1) foruseby Task1() ,Task2() andTask3(),
2) Eachtask hasanamewhichis storedinthe TCB extension L1.21(2) and,
3) Stack checking will not be allowed.




void TaskStart (void *data)

{

Prevent conpiler warning by assigning ‘data’ to itself;
Di spl ay a banner and non-changi ng text;

Install uC GCS-I1's tick handl er;

Change the tick rate to 200 Hz;

Initialize the statistics task;

Create a nessage queue; (1)
Create a task that will display the date and time on the screen;
Create 5 application tasks with a name stored in the TCB ext.; (2)
for (53) {

Di spl ay #tasks running;
Di splay CPU usage in %
Di spl ay #context switches per seconds;
O ear the context switch counter;
Display uC GCs-11’s version;
if (Key was pressed) {
if (Key pressed was the ESCAPE key) ({
Return to DCS;
}
}

Del ay for 1 second;

Listing 1.21, Pseudo-code for TaskStart() for example #3.

Task1() writes messages into the message queue L1.22(1). Task1() delays itself whenever a
message issent L1.22(2). Thisallowsthe receiver to display the message at a humanly readablerate. Three
different messages are sent.

void Taskl (void *data)

{

char one ='1";

char two ='2";

char three = '3';

data = dat a;

for (;;) {
OSQPost (MsgQueue, (void *)&one); (1)
OsTi neDl yHVBM 0, 0, 1, 0); (2)

OSQPost (MsgQueue, (void *) & wo);
OSTi neDl yHVBM 0, 0, 0, 500);
OSQPost (MsgQueue, (void *)&t hree);
OSTi neDl yHVBM 0, 0, 1, 0);

Listing 1.22, Example #3, Task #1.




Task2() pends on the message queue with no timeout L1.23(1). This means that the task will wait
forever for a message to arrive. When the message is received, Task2(') displays the message on the
screen L1.23(2) and delays itself for 500 mS L1.23(3). Thiswill allow Task3() to receive amessage
because Task2(') will not be checking the queue for awhole 500 mS.

void Task2 (void *data)

{
| NT8U *nsg;
I NT8U err;
data = data;
for (;;) {
msg = (I NT8U *) GSQPend( MsgQueue, 0, &err); (1)
PC Di spChar (70, 14, *msg, DI SP_FG\D YELLOMDI SP_ BG\D BLUE); (2)
OSTi meDl yHVBM 0, 0, 0, 500); (3)
}
}

Liging 1.23, Example #3, Task #2.

Task3() also pends on the message queue but, it is willing to wait for only 250 mS L1.24(1). If a
messageis received, Task3( ) will display the message number L1.24(3). If atimeout occurs, Task3( )
will display a‘T’ (for timeout) instead L1.24(2).

void Task3 (void *dat a)
{
I NT8U *nsg;
I NTBU err;
data = dat a;
for (;;) {
nmsg = (I NT8U *) OsQ@Pend( MsgQueue, OS Tl CKS PER SEC/ 4, &err); (1)
if (err == OS_TI MEQUT) {
PC Di spChar (70, 15,' T', Dl SP_FG\D_YELLOM-DI SP_BG\D _RED) ; (2)
} else {
PC _Di spChar (70, 15, *nsg, DI SP_FG\D_YELLOMDI SP_BG\D BLUE); (3)
}
}
}

Listing 1.24, Example #3, Task #3.

Task4() doesn't do much except post L1.25(1) and pend L1.25(2) on amailbox. This basically allows

you to measure the time it takes for these calls to execute on your particular PC. Task4() executesevery
10MSL1.25(3).

| void Task4 (void *data)




CS_EVENT *nbox;

| NT8U err;

data = dat a;

nmbox = OSMhoxCreate((void *)0);

for (;;) {
OCSMhoxPost (mbox, (void *)1); (1)
OCSMWboxPend( nmbox, 0, &err); (2)
CsTi nreDl yHVBM 0, 0, 0, 10); (3)

}

Ligting 1.25, Example #3, Task #4.

Task5() doesnothing useful except it delaysitself for 1 clock tick L1.26(1). Notethat all p C/OS-11 tasks

MUST call aservice provided by p C/OS:11 to wait for either time to expire or an event to occur. If thisisnot
done, the task would prevent all lower priority tasks from running.

void Task5 (void *dat a)

data = dat a;

for (53) {
CSTi meDl y(1) ; (1)
}

Listing 1.26, Example #3, Task #5.

TaskCl k() isatask that displaysthe current date and time every second.




1.09.03 Example #3, Notes

There are things happening behind the scenes and would not be apparent just by looking at EX3L. C.
EX3L. Ccontains code for OSTask SwHook () that measures the execution time of each task, how
often each task executes, and keepstrack of total execution time of each task. Thisinformationisstoredin
the TCB extension so that it can be displayed. OSTask SwHo oK () iscalled every time a context switch
occurs.

The execution time of the task being switched out is obtained by reading a timer on the PC through the

function PC_El apsedSt op() L1.27(1). It is assumed that the timer was started by calling

PC _El apsedStart () when the task was switched in L1.27(2). The first context switch will

probably read an incorrect value but thisisnot critical. OSTask SWHOOK () then retrieves the pointer to
the TCB extension L1.27(3) and, if an extension exist L1.27(4) for the task, a counter isincremented L 1.27(5)
which indicates how often the current task has been switched out. Such a counter is useful to determineif a
particular task is running. Next, the execution time of the task being switched out is saved in the TCB

extension L1.27(6). A separate accumulator is used to maintain the total execution time L1.27(7). This
allows you to determine the percentage of time each task takes with respect to other tasksin an application.
Note that these statistics are displayed by OSTask St at Hook () .

voi d OSTaskSwHook (voi d)

{
| NT16U tine;
TASK_USER _DATA *puser ;
tine = PC_El apsedStop(); (1)
PC El apsedStart(); (2)
puser = OSTCBCur - >OSTCBEXxt Ptr; (3)
if (puser !'= (void *)0) { (4)
puser - >TaskCt r ++; (5)
puser - >TaskExecTi me = tine; (6)
puser - >TaskTot ExecTi me += ti ne; (7)
}
}

Ligting 1.27, User defined OST ask SwH ook ().

1 C/OS-11 dlways callsafunction called OSTask St at Hook () when you enable the statistic task (i.e.
the configuration constant OS_TASK_STAT_ENin OS_CFG H is set to 1). When enabled, the
statistic task OSTask St at () aways calls the user definable function OSTask St at Hook( ) .
Thishappensevery second. | decidedtohaveOSTask St at Hook () display the statistics collected by
OSTaskSwHook( ) . Inaddition, OSTask St at Hook () also computes the percentage of time
that each task takes with respect to each other.




Thetotal execution time of all tasksiscomputed in L1.28(1). Then, individual statistics are displayed at the
proper location on the screen L1.28(2) by a function (i.e. Di spTaskSt at () ) that takes care of
converting the valuesinto ASCII. Next, the percentage of execution time is computed for each task L1.28(3)
and displayed L1.28(4).

voi d OSTaskSt at Hook (voi d)
{

char s[ 80] ;

INT8U i;

I NT32U tot al ;

I NT8BU pct;

total = OL;

for (i =0; i <7; i++) {
total += TaskUserData[i]. TaskTot ExecTi ne; (1)
Di spTaskStat (i); (2)

i}f (total > 0) {
for (i =0; i <7; i++) {
pct = 100 * TaskUserData[i].TaskTot ExecTinme / total; (3)
sprintf(s, "%3d 94, pct);
PC DispStr(62, i + 11, s, D SP_FG\D_YELLOW; (4)
}

}
if (total > 1000000000L) {
for (i =0; i <7; i++) {
TaskUserDat a[i]. TaskTot ExecTi me = OL;
}

Listing 1.28, User defined OST ask StatH ook ().




Chapter 2

Real-Time Systems Concepts

Real-time systems are characterized by the fact that severe consequences will result if logical as well as timing

correctness properties of the system are not met. There are two types of rea-time systems: SOFT and HARD. Ina
SOFT real-time system, tasks are performed by the system as fast as possible, but the tasks don't have to finish by

specifictimes. In HARD real-time systems, taskshaveto be performed not only correctly but ontime. Most real-time
systems have a combination of SOFT and HARD requirements. Real-time applications cover a wide range. Most

applicationsfor real-time systems areembedded. Thismeansthat thecomputer isbuiltinto asystem andisnot seen by
the user as being a computer. Examples of embedded systems are:

Process control:
Food processing
Chemical plants
Automotive:
Engine controls
Anti-lock braking systems
Office automation:
FAX machines
Copiers
Computer peripherals:
Printers
Terminas
Scanners
Modems
Robots
Aerospace:
Flight management systems
Weapons systems
Jet engine controls
Domestic:
Microwave ovens
Dishwashers
Washing machines
Thermostats

Real-time software applications are typically more difficult to design than non-real-time applications. This chapter
describes real-time concepts.

2.00 Foreground/Background Systems

Small systems of low complexity are generally designed as shown in Figure 2-1. These systems are called
foreground/background or super-loops. An application consists of an infinite logp that calls modules (that is,
functions) to perform the desired operations (background). Interrupt Service Routines (I1SRs) handle asynchronous
events (foreground). Foreground is also calledinterrupt level while background is called task level. Critical operations
must be performed by the ISRs to ensure that they are dealt with in a timely fashion. Because of this, ISRs have a



tendency to take longer than they should. Also, information for a background module made available by an ISR is not
processed until the background routine gets its turn to execute. Thisis called thetask level response. The worst case
task level response time depends on how long the background loop takes to execute. Because the execution time of
typical code is not constant, the time for successive passes through a portion of the loop is non-deterministic.
Furthermore, if a code change is made, the timing of the loop is affected.

Most high volume microcontroller-based applications (e.g., microwave ovens, telephones, toys, and so on) are
designed as foreground/background systems. Also, in microcontrollerbased applications, it may be better (from a

power consumption point of view) to halt the processor and perform all of the processingin ISRs.

Background  —— Foreground —
.

Code execution

Figure 21, Foreground/background systems
2.01 Critical Section of Code

A critical section of code, also called acritical region, is code that needs to be treated indivisibly. Once the section of
code starts executing, it must not be interrupted. To ensure this, interrupts are typically disabled before the critical
code is executed and enabled when the critical codeisfinished (see aso Shared Resource).

2.02 Resource

A resourceis any entity used by atask. A resource can thus be an I/O device such as a printer, akeyboard, adisplay,
etc. or avariable, astructure, an array, etc.

2.03 Shared Resource

A shared resource is aresource that can be used by more than one task. Each task should gain exclusive access to the
shared resourceto prevent datacorruption. ThisiscalledMutual Exclusionand techniquesto ensure mutual exclusion
arediscussed in section 2.19, Mutual Exclusion.

2.04 Multitasking



Multitasking is the process of scheduling and switching the CPU (Central Processing Unit) between several tasks; a
single CPU switches its attention between several sequential tasks. Multitasking is like foreground/background with
multiple backgrounds. Multitasking maximizes the utilization of the CPU and also provides for modular construction
of applications. One of the most important aspects of multitasking is that it allows the application programmer to
manage complexity inherent in real-time applications. Application programs are typically easier to design and

maintain if multitasking is used.

2.05 Task
A task, also called athread, is a simple program that thinks it has the CPU all to itself. The design process for a

real-time application involves splitting the work to be done into tasks which are responsible for a portion of the
problem. Each task is assigned apriority, its own set of CPU registers, and its own stack area (as shown in Figure 2-2).

TASK #1 TASK #2 TASK #n
Stack Stack Stack
—»
—
—
Task Control Block Task Control Block Task Control Block
Status. Status Status.
SP SP SP.
Priority Priority Priority
MEMORY

NN

CPU Registers

SP

Figure 22, Multiple tasks.

Context




Eachtask typically isaninfiniteloop that can bein any one of five states: DORMANT, READY, RUNNING, WAITING
FOR AN EVENT, or INTERRUPTED (see Figure 2-3). The DORMANT state corresponds to atask which residesin
memory but has not been made available to the multitasking kernel. A task is READY when it can execute but its
priority is less than the currently running task. A task is RUNNING when it has control of the CPU. A task is
WAITING FOR AN EVENT when it requires the occurrence of an event (waiting for an 1/O operation to complete, a
shared resource to be available, atiming pulse to occur, timeto expire etc.). Finally, atask isINTERRUPTED when
an interrupt has occurred and the CPU isin the process of servicing the interrupt. Figure 2-3 al so showsthe functions
provided by u C/OSHI to make atask switch from one state to another.

OSMBoxPost() OSMBoxPend()
0SQPost() 0SQPend()

0SQPostFront()

0SSemPost() 0SSemPend()
OSTaskDel() OSTaskResume() OSTaskSuspend()

OSTimeDlyResume() OSTimeDly()

OSTimeTick() OSTimeDlyHMSM()

OSTaskCreate()
OSTaskCreateExt()

OSStart()
OSIntExit()
0S TASK _SW()

DORMANT
OSIntExit()

OSTaskDel()

OSTaskDel()

Figure 2-3, Task dates

2.06 Context Switch (or Task Switch)

When amultitasking kernel decidesto run a different task, it simply saves the current task'scontext (CPU registers) in
the current task's context storage area — it's stack (see Figure 2-2). Once this operation is performed, the new task's
context is restored from its storage area and then resumes execution of the new task's code. This processis called a
context switch or atask switch. Context switching adds overhead to the application. The more registers a CPU has, the
higher the overhead. The time required to perform a context switch is determined by how many registers have to be
saved and restored by the CPU. Performance of areal-time kernel should not be judged on how many context switches
the kernel is capable of doing per second.

2.07 Kernd

The kernel is the part of a multitasking system responsible for the management of tasks (that is, for managing the
CPU'stime) and communication between tasks. The fundamental service provided by the kernel is context switching.
The use of areal-time kernel will generally simplify the design of systems by allowing the application to be divided
into multiple tasks managed by the kernel. A kernel will add overhead to your system because it requires extra ROM
(code space), additional RAM for the kernel data structures but most importantly, each task requires its own stack
space which has atendency to eat up RAM quite quickly. A kernel will also consume CPU time (typically between 2
and 5%).



Single chip microcontrollers are generally not able to run areal-time kernel because they have very little RAM.

A kernel can allow you to make better use of your CPU by providing you with indispensible services such as
semaphore management, mailboxes, queues, time delays, etc. Once you design a system using areal-time kernel, you
will not want to go back to aforeground/background system.

2.08 Scheduler

Thescheduler, also called thedispatcher, isthe part of the kernel responsiblefor determining which task will run next.
Most real -timekernelsarepriority based. Each task isassigned apriority based onitsimportance. Thepriority for each
task is application specific. In apriority -based kernel, control of the CPU will always be given to the highest priority
task ready-torun. When the highest-priority task gets the CPU, however, is determined by the type of kernel used.
There are two types of priority-based kernels: non-preemptive and preemptive.

2.09 Non-Preemptive Kernel

Non-preemptive kernels require that each task does something to explicitly give up control of the CPU. To maintain
the illusion of concurrency, this process must be done frequently. Non-preemptive scheduling is aso called
cooper ative multitasking; tasks cooperate with each other to share the CPU. Asynchronous events are still handled by
ISRs. An ISR can make a higher priority task ready to run, but the ISR always returnsto the interrupted task. The new
higher priority task will gain control of the CPU only when the current task gives up the CPU.

One of the advantages of a non-preemptive kernel isthat interrupt latency istypically low (seethe later discussion on
interrupts). At the task level, non-preemptive kernels can also use non-reentrant functions (discussed later).

Non-reentrant functions can be used by each task without fear of corruption by another task. Thisis because each task
can run to completion beforeit relinquishesthe CPU. Non-reentrant functions, however, should not be allowed to give
up control of the CPU.

Task-level response using a non-preemptive kernel can be much lower than with foreground/background systems
because task-level response is now given by the time of the longest task.

Another advantage of non-preemptive kernelsis the lesser need to guard shared daa through the use of semaphores.
Each task owns the CPU and you don't have to fear that atask will be preempted. Thisis not an absoluterule, andin
some instances, semaphores should still be used. Shared I/O devices may still require the use of mutual exclusion

semaphores; for example, atask might still need exclusive accessto aprinter.
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Figure 24, Non-preemptive kernd

The execution profile of a non-preemptive kernel is shown in Figure 24. A task is executing F2-4(1) but gets
interrupted. If interrupts are enabled, the CPU vectors (i.e. jumps) to the ISR F2-4(2). The ISR handles the event
F2-4(3) and makes a higher priority task ready-to-run. Upon completion of the ISR, a Return From Interrupt
instruction is executed and the CPU returns to the interrupted task F2-4(4). The task code resumes at the instruction
following the interrupted instruction F2-4(5). When the task code completes, it calls a service provided by the kernel
to relinquish the CPU to another task F2-4(6). The new higher priority task then executesto handle the event signaled
by the ISR F2-4(7).

The most important drawback of a non-preemptive kernel is responsiveness. A higher priority task that has been made
ready to run may have to wait along time torun, because the current task must give up the CPU when it is ready to do
so0. As with background execution in foreground/background systems, task-level response time in a non-preemptive
kernel is non-deterministic; you never really know whenthehighest priority task will get control of the CPU. Itisupto
your application to relinquish control of the CPU.

To summarize, anon-preemptive kernel allows each task to run until it voluntarily gives up control of the CPU. An
interrupt will preempt a task. Upon completion of the ISR, the ISR will return to the interrupted task. Task-level
response is much better than with a foreground/background system but is still non-deterministic. Very few
commercial kernels are non-preemptive.

2.10 Preemptive Kernel

A preemptive kernel is used when system responsiveness is important. Because of this, u C/OS-II and most
commercial real-timekernelsare preemptive. Thehighest priority task ready to runisawaysgiven control of the CPU.
When a task makes a higher priority task ready to run, the current task is preempted (suspended) and the higher

priority task is immediately given control of the CPU. If an ISR makes a higher priority task ready, when the ISR

completes, the interrupted task is suspended and the new higher priority task is resumed. Thisisillustrated in Figure
25.



Low Priority Task

B, sz |

Hith Priority Task

ISR makes the high )
priority task ready Time

<

Figure 2-5, Preemptive kerne

With a preemptive kernel, execution of the highest priority task is deterministic; you can determine when the highest
priority task will get control of the CPU. Tasklevel response timeisthus minimized by using a preemptive kernel.

Application code using a preemptive kernel should not make use of non-reentrant functions unless exclusive access to
thesefunctionsisensured through theuse of mutual exclusion semaphores, because both alow priority task and ahigh
priority task can make use of acommon function. Corruption of data may occur if the higher priority task preemptsa
lower priority task that is making use of the function.

To summarize, a preemptive kernel always executes the highest priority task that is ready to run. An interrupt will
preempt atask. Upon completion of an ISR, the kernel will resume execution to the highest priority task ready to run

(not theinterrupted task). Task-level responseis optimum and deterministic. g C/OS-I1 isapreemptive kernel.

2.11 Reentrancy

A reentrant functionis afunction that can be used by more than one task without fear of data corruption. A reentrant
function can be interrupted at any time and resumed at alater time without loss of data. Reentrant functions either use
local variables (i.e., CPU registers or variables on the stack) or protect data when global variables are used. An
example of areentrant function isshown inlisting 2.1.

void strcpy(char *dest, char *src)

whil e (*dest++ = *src++) {

}
*dest = NUL;

Listing 2.1, Reentrant function




Because copies of the argumentstost r cpy() areplaced onthetask's stack, st r cpy() can beinvoked by multiple
tasks without fear that the tasks will corrupt each other's pointers.

Anexampleof anonreentrant functionisshowninlisting 2.2.swap() isasimplefunction that swapsthe contents of

itstwo arguments. For sake of discussion, | assumed that you are using apreemptivekernel, that interruptsare enabled
and that Tenp isdeclared as aglobal integer:

int Tenp;

void swap(int *x, int *y)

Temp = *x;
*X — *y’
*y = Tenp;

Listing 2.2, Non-Reentrant function

The programmer intended to make swap( ) usable by any task. Figure 2-6 shows what could happen if alow priority
task is interrupted whileswap() F2-6(1) isexecuting. Note that at this point Tenp contains 1. The ISR makes the
higher priority task ready to run, and thus, at the completion of the ISR F2-6(2), the kernel (assuming p C/OS-11) is
invoked to switch to this task F2-6(3). The high priority task setsTenp to 3 and swaps the contents of its variables
correctly (that is, z is4 and t is 3). The high priority task eventually relinquishes control to the low priority task
F2-6(4) by calling a kernel service to delay itself for 1 clock tick (described later). The lower priority task is thus
resumed F2-6(5). Note that at thispoint, Tenp isstill set to3! When the low-priority task resumes execution, it setsy
to 3 instead of 1.

LOW PRIORITY TASK HIGH PRIORITY TASK
Temp ==

X = 1; z =3

o — |:~:Rﬂl>o.s.3£_> P
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Figure 26, Non-reentrant function.

Note that this asimple example and it is obvious how to make the code reentrant. However, other situations are not as
easy to solve. An error caused by a non-reentrant function may not show up in your application during the testing
phase; it will most likely occur oncethe product has been delivered! If you are new to multitasking, you will need to be
careful when using non-reentrant functions.

Wecan makeswap() reentrant by using one of the following techniques:




a) Declare Tenp loca toswap() .

b) Disable interrupts before the operation and enable them after.
¢) Use a semaphore (described later).

If the interrupt occurs either before or after swap() , thex andy valuesfor both tasks will be correct.

2.12 Round Robin Scheduling

When two or more tasks have the same priority, the kernel will allow one task to run for a predetermined amount of
time, called aguantum, and then selects another task. Thisis also called time slicing. The kernel gives control to the

next task in lineif:

a) the current task doesn't have any work to do during itstime slice or
b) the current task completes before the end of itstime slice.

U C/OS-11 does not currently support round-robin scheduling. Each task must have a unique priority in your
application.

2.13 Task Priority

A priority is assigned to each task. The more important the task, the higher the priority given toit.

2.14 Static Priorities

Task priorities are said to be static when the priority of each task does not change during the application's execution.
Each task isthus given afixed priority at compile time. All the tasks and their timing constraints are known at compile
time in a system where priorities are static.

2.15 Dynamic Priorities

Task priorities are said to be dynamic if the priority of tasks can be changed during the application's execution; each
task can change its priority at run-time. This is a desirable feature to have in a real-time kernel to avoid priority
inversions.

2.16 Priority Inversions

Priority inversion is a problem in reattime systems and occurs mostly when you use a real-time kernel. Figure 2-7
illustrates a priority inversion scenario. Task#1 has a higher priority than Task#2 which in turn has a higher priority
than Task#3. Task#1 and Task#2 are both waiting for an event to occur and thus, Task#3 is executing F2-7(1). At
some point, Task#3 acquires a semaphore (see section 2.18, Semaphores) that it needs before it can access a shared
resource F2-7(2). Task#3 performs some operations on the acquired resource F2-7(3) until it gets preempted by the
high priority task, Task#1 F2-7(4). Task#1 executes for a while until it also wants to access the resource F2-7(5).
Because Task#3 owns the resource, Task#1 will have to wait until Task#3 releases the semaphore. As Task#1 triesto
get the semaphore, the kernel notices that the semaphore is already owned and thus, Task#1 gets suspended and
Task#3 isresumed F2-7(6). Task#3 continues execution until it gets preempted by Task#2 because the event that
Task#2 was waiting for occurred F2-7(7). Task #2 handles the event F2-7(8) and when it's done, Task#2 relinquishes
the CPU back to Task#3 F2-7(9). Task#3 finishes working with the resource F2-7(10) and thus, releases the
semaphore F2-7(11). At this point, the kernel knows that a higher priority task is waiting for the semaphore and, a
context switch is done to resume Task#1. At this point, Task#1 has the semaphore and can thus access the shared
resource F2-7(12).

The priority of Task#1 has been virtually reduced to that of Task#3's because it was waiting for the resource that
Task#3 owned. The situation got aggravated when Task#2 preempted Task#3 which further delayed the execution of
Task#l.

Y ou can correct this situation by raising the priority of Task#3 (above the priority of the other tasks competing for the
resource) for the time Task#3 is accessing the resource and restore the original priority level when the task isfinished.



A multitasking kernel should allow task priorities to change dynamically to help prevent priority inversions. It takes,
however, some time to change atask’s priority. What if Task#3 had completed access of the resource before it got
preempted by Task#1 and then by Task#2? Had we raised the priority of Task#3 before accessing the resource and
then lowered it back when done, we would have wasted valuable CPU time. What isreally needed to avoid priority
inversion is a kernel that changes the priority of a task automatically. This is called priority inheritance, and
unfortunately p C/OS 11 doesn’t support thisfeature. There are, however, some commercia kernelsthat do.
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Figure 27, Priority inversion problem.

Figure2-8 illustrateswhat happenswhen akernel supportspriority inheritance. Aswiththepreviousexample, Task#3
isrunning F2-8(1) and then acquires a semaphore to access a shared resource F2-8(2). Task#3 accesses the resource
F2-8(3) and then gets preempted by Task#1 F2-8(4). Task#1 executes F2-8(5) and then tries to obtain the semaphore
F2-8(6). The kernel seesthat Task#3 has the semaphore but has alower priority than Task#1. In this case, the kernel

raisesthepriority of Task#3tothesamelevel asTask#1. Thekernel then switchesback to Task#3 so that thistask can
continuewiththeresource F2-8(7). When Task#3 isdonewith theresource, it rel easesthe semaphore F2-8(8). Atthis
point, the kernel reduces the priority of Task#3 to its original value and gives the semaphore to Task#1 which is now

free to continue F2-8(9). When Task#1 is done executing F2-8(10), the medium priority task (i.e. Task#2) gets the
CPU F2-8(11). Note that Task#2 could have been ready-to-run anytime between F2-8(3) and F2-8(10) without

affecting the outcome. Thereisstill somelevel of priority inversion but, thisreally cannot be avoided.
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Figure 28, Kernd that supports priority inheritance.

2.17 Assigning Task Priorities

Assigning task priorities is not a trivial undertaking because of the complex nature of real-time systems. In most
systems, not all tasks are considered critical. Non-critical tasks should obviously be given low priorities. Most
real-time systems have a combination of SOFT and HARD requirements. In a SOFT real-time system, tasks are
performed by the system as quickly as possible, but they don't have to finish by specific times. In HARD real-time
systems, tasks have to be performed not only correctly but on time.

An interesting technique called Rate Monotonic Scheduling (RMS) has been established to assign task priorities based
on how often tasks execute. Simply put, tasks with the highest rate of execution are given the highest priority (see
Figure 2-9).

RM S makes a number of assumptions:

1. All tasks are periodic (they occur at regular intervals).

2. Tasksdo not synchronize with one another, share resources, or exchange data.

3. The CPU must always execute the highest priority task that is ready to run. In other words, preemptive
scheduling must be used.

Given a set of n tasks that are assigned RMS priorities, the basic RMS theorem states that all task HARD real-time
deadlineswill always be met if the following inequality is verified:



Equation 2.1

where, B corresponds to the maximum execution time of taski and Ti corresponds to the execution period of task i. In
other words, Ei/Ti correspondsto the fraction of CPU time required to executetask i. Table 2.1 shows the value for
Size n(21’”-l) based on the number of tasks. The upper bound for an infinite number of tasksis given by In(2) or 0.693.
This means that to meet all HARD real-time deadlines based on RM S, CPU utilization of all time-critical tasks should
belessthan 70 percent! Note that you can still have non-time-critical tasks in a system and thus use 100 percent of the
CPU'stime. Using 100 percent of your CPU'stime is not a desirable goal because it does not allow for code changes
and added features. As arule of thumb, you should always design a system to use less than 60 to 70 percent of your
CPU.

Number of Tasks n(27"-1)
1.000
0.828
0.779
0.756
0.743

QW[N]

Infinity 0.693

Table2.1

RMS says that the highestrate task has the highest priority. In some cases, the highest-rate task may not be the most
important task. Y our application will thus dictate how you need to assign priorities. RMS is, however, an interesting
starting point.

2.19 Mutual Excluson

The easiest way for tasks to communicate with each other is through shared dda structures. Thisis especially easy
when all the tasks exist in asingle address space. Tasks can thus reference global variables, pointers, buffers, linked
lists, ring buffers, etc. While sharing data simplifies the exchange of information, you mustensure that each task has
exclusive access to the data to avoid contention and data corruption. The most common methods to obtain exclusive
access to shared resources are:

a) Disabling interrupts
b) Test-And-Set

c¢) Disabling scheduling
d) Using semaphores

2.19.01 Mutual Exclusion, Disabling and enabling interrupts

The easiest and fastest way to gain exclusive access to a shared resource is by disabling and enabling interrupts as
shown in the pseudo-code of listing 2.3.

Di sabl e interrupts;
Access the resource (read/wite fromto variabl es);
Reenabl e i nterrupts;

Listing 2.3, Disabling/enabling interrupts.

WU C/OS-11 uses this technique (as do most, if not all kernels) to access internal variables and data structures. In fact,
UC/OS-I1 provides two macros to alow you to disable and then enable interrupts from your C code:




OS_ENTER CRITI CAL() and OS_EXI T_CRI TI CAL(), respectively (see section 8.03.02, OS CPU.H,
OS ENTER _CRITICAL() and OS_EXIT_CRITICAL()). You need to use these macrosin pair as shown in listing 2.4.

voi d Function (void)
OS_ENTER CRITI CAL() ;
/* You can access shared data in here */

0S_EXI T_CRI Tl CAL() ;

Ligting 2.4, Usng p C/OS-11"'s macros to disable/enable interrupts.

Y ou must be careful, however, to not disableinterrupts for too long because this affects the response of your system to
interrupts. Thisisknown asinterrupt latency. Y ou should consider this method when you are changing or copying a
few variables. Also, thisistheonly way that atask c an sharevariablesor datastructureswithan ISR. Inall cases, you
should keep interrupts disabled for aslittle time as possible.

If youuseakernel, you arebasically allowed to disableinterruptsfor asmuch time asthe kernel doeswithout affecting
interrupt latency. Obviously, you need to know how long the kernel will disable interrupts. Any good kernel vendor
will provide you with thisinformation. After all, if they sell areal-time kernel, time isimportant!




2.19.02 Mutual Exclusion, Test-And-Set

If you are not using akernel, two functions could ‘agree’ that to access a resource, they must check a global variable,
and if the variable is O the function has access to the resource. To prevent the other function from accessing the
resource, however, the first function that gets the resource simply setsthe variabletol. Thisis commonly called a
Test-And-Set (or TAS) operation. The TAS operation must either be performed indivisibly (by the processor) or you
must disable interrupts when doing the TAS on the variable as shown in listing 2.5.

Di sabl e interrupts;
if (*Access Variable’ is 0) {
Set variable to 1;
Reenabl e interrupts;
Access the resource;
Di sabl e interrupts;
Set the ‘ Access Variable' back to O;
Reenabl e interrupts;
} else {
Reenabl e i nterrupts;
/* You don't have access to the resource, try back |later; */

Listing 2.5, Using Test-And-Set to access a resour ce.

Some processors actually implement a TAS operation in hardware (e.g. the 68000 family of processors have the TAS
instruction).

2.19.03 Mutual Exclusion, Disabling and enabling the scheduler

If your task is not sharing variables or data structures with an | SR then you can disable/enabl e scheduling (see section
3.06, Locking and Unlocking the Scheduler) as shown in listing 2.6 (using pt C/OS-11 as an example). In this case, two
or more tasks can share data without the possibility of contention. Y ou should note that while the scheduler islocked,
interruptsareenabled and, if aninterrupt occurswhileinthecritical section, the | SRwill immediately be executed. At
the end of the ISR, the kernel will always return to the interrupted task even if a higher priority task has been made
ready-to-run by the ISR. The scheduler will be invoked when OSSchedUnl ock() is called to see if a higher
priority task has been made ready to run by thetask or an ISR. A context switch will result if thereisahigher priority
task that isready to run. Although thismethod workswell, you should avoid disabling theschedul er becauseit defeats

the purpose of having akernel in the first place. The next method should be chosen instead.

void Function (void)
OSSchedLock() ;
/* You can access shared data in here (interrupts are recogni zed) */

osschedunl ock() ;

Listing 2.6, Accessing shared data by disabling/enabling scheduling.
2.19.04 Mutual Exclusion, Semaphores

The semaphore was invented by Edgser Dijkstrain the mid 1960s. A semaphore is a protocol mechanism offered by
most multitasking kernels. Semaphores are used to:

a) control accessto a shared resource (mutual exclusion);

b) signal the occurrence of an event;
c) allow two tasksto synchronize their activities.




A semaphoreisakey that your code acquiresin order to continue execution. If the semaphore is already in use, the

requesting task is suspended until the semaphore is released by its current owner. In other words, the requesting task
says: "Give methekey. If someone elseisusingit, | am willing to wait for it!"

There are two types of semaphores. binary semaphores and counting semaphores. As its name implies, a binary
semaphore can only take two values: 0 or 1. A counting semaphore allows values between 0 and 255, 65535 or
4294967295, depending on whether the semaphore mechanism isimplemented using 8, 16 or 32 bits, respectively.
The actual size depends on the kernel used. Along with the semaphore's value, the kernel also needsto keep track of
tasks waiting for the semaphore's availability.

There are generally only three operations that can be performed on a semaphore: INITIALIZE (also called CREATE),
WAIT (also called PEND), and SIGNAL (also called POST).

The initial value of the semaphore must be provided when the semaphore is initialized. The waiting list of tasksis
dwaysinitialy empty.

A task desiring the semaphore will perform aWAIT operation. If the semaphore is available (the semaphore value is
greater than 0), the semaphore value is decremented and the task continues execution. If the semaphore's value isO0,

the task performing aWAIT on the semaphore is placed in awaiting list. Most kernels allow you to specify atimeout;

if the semaphoreis not available within a certain amount of time, the requesting task is made ready to run and an error
code (indicating that atimeout has occurred) isreturned to the caller.

A task releases a semaphore by performing a SIGNAL operation. If no task is waiting for the semaphore, the
semaphore value is simply incremented. If any task iswaiting for the semaphore, however, one of the tasks is made
ready to run and the semaphore value is not incremented; the key is given to one of the tasks waiting for it. Depending
on the kernel, the task which will receive the semaphoreis either:

a) the highest priority task waiting for the semaphore, or
b) thefirst task that requested the semaphore (First In First Out, or FIFO).

Some kernels allow you to choose either method through an option when the semaphoreisinitialized. u C/OS-11 only
supports the first method. If the readied task has a higher priority than the current task (the task releasing the
semaphore), a context switch will occur (with a preemptive kernel) and the higher priority task will resume execution;
the current task will be suspended until it again becomes the highest priority task ready-to-run.

Listing 2.7 shows how you can share data using a semaphore (using g C/OS-I1). Any task needing access to the same
shared datawill call 0SSemPend() and when the task is done with the data, the task callsOSSemPost () . Both of

these functions will be described later. Y ou should note that a semaphore is an object that needs to be initialized
before it's used and for mutual exclusion, a semaphore is initialized to a value of 1. Using a semaphore to access
shared data doesn’t affect interrupt latency and, if an ISR or the current task makes a higher priority task ready-to-run
while accessing the data then, this higher priority task will executeimmediately.

OS_EVENT * Shar edDat aSem

void Function (void)

| NT8U err;

OSSenPend( Shar edDat aSem 0, &err);

/* You can access shared data in here (interrupts are recogni zed) */

OSSenPost ( Shar edDat aSen) ;




Listing 2.7, Accessing shared data by obtaining a semaphore.

Semaphores are especially useful when tasks are sharing 1/0 devices. Imagine what would happen if two tasks were
allowed to send charactersto aprinter at the sametime. The printer would contain interleaved data from each task. For
instance, if task #1 tried to print “ 1 am task #1!” and task #2 tried to print “1 am task #2!” then the printout could look
likethis:

| laamm t tasask k#1 #12!

In this case, we can use asemaphore and initialize it tol (i.e. abinary semaphore). Therule is simple: to access the
printer each task must first obtain the resource's semaphore. Figure 29 shows the tasks competing for a semaphore to
gain exclusive access to the printer. Note that the semaphore is represented symbolically by akey indicating that each
task must obtain this key to use the printer.

The above example implies that each task must know about the existence of the semaphore in order to access the
resource. There are situations when it is better to encapsulate the semaphore. Each task would thus not know that it is
actually acquiring a semaphore when accessing the resource. For example, an RS-232C port is used by multiple tasks
to send commands and receive responses from a device connected at the other end of the RS-232C port. A flow
diagram is shown in Figure 2-10.

"l am task #1!"

N\

Acquire Semaphore N

b}

ISEMAPHORE | PRINTER |
<

/
/

Acquire Semaphore Vs
//

/

/

"l am task #2!"

Figure 29, Usng a semaphore to get permission to access a printer.

The function CommSendCnd () iscalled with three arguments: the ASCI| string containing the command, a pointer
totheresponsestringfromthedevice, andfinally, atimeout in case the device doesn't respond within acertain amount
of time. The pseudo-code for thisfunctionis:

I NTBU CommBendCnd(char *cnd, char *response, |NT16U ti meout)
{
Acquire port's semaphore;
Send command to devi ce;
Wit for response (with tineout);
if (timed out) {
Rel ease semaphor e;
return (error code);
} else {




Rel ease semaphor g;
return (no error);

}

Listing 2.8, Encapsulating a ssmaphore.

Each task which needs to send a command to the device has to call this function. The semaphore is assumed to be
initialized to 1 (i.e., available) by the communication driver initialization routine. The first task that calls

CommSendCnd () will acquire the semaphore and thus proceed to send the command and wait for a response. |If

anothertask attemptsto send acommand whilethe port isbusy, thissecond task will be suspended until the semaphore
isreleased. The second task appears to have simply made a call to a normal function that will not return until the
function has performed its duty. When the semaphore is released by the first task, the second task will acquire the
semaphore and will thus be allowed to use the RS-232C port.

ommSendCmd()

DRIVER [¢—¥ RS-232C

CommSendCmd()

LSemaphore

Figure 210, Hiding a semaphor e from tasks.

A counting semaphore is used when aresource can be used by more than one task at the same time. For example, a

counting semaphore is used in the management of abuffer pool as shown in Figure 2-11. Let's assume that the buffer
pool initially contains 10 buffers. A task would obtain a buffer from the buffer manager by callingBuf Req( ) . When

the buffer is no longer needed, the task would return the buffer to the buffer manager by calling Buf Rel () . The
pseudocode for these functionsis shownin listing 2.9.

BUF *Buf Req( voi d)

{
BUF *ptr;
Acqui re a semaphor e;
Di sabl e interrupts;
ptr = Buf Freeli st ;
Buf FreeLi st = pt r- >Buf Next ;
Enabl e interrupts;
return (ptr);
}

voi d Buf Rel (BUF *ptr)
{

Di sabl e interrupts;
pt r- >Buf Next = Buf FreelLi st;




Buf FreeLi st = ptr;
Enabl e i nterrupts;
Rel ease senmaphor e;

L}

Listing 2.9, Buffer management using a ssmaphore.

The buffer manager will satisfy the first 10 buffer requests (since there are 10 keys). When all semaphores are used, a
task requesting a buffer would be suspended until a semaphore becomes available. Interrupts are disabled to gain
exclusive access to the linked list (this operation is very quick). When atask is finished with the buffer it acquired, it
calls Buf Rel () to return the buffer to the buffer manager; the buffer is inserted into the linked list before the
semaphore is released. By encapsulating the interface to the buffer manager inBuf Req() and Buf Rel (), thecaller

doesn't need to be concerned with the actual implementation details.

Semaphores are often overused. The use of a semaphore to access a simple shared variable is overkill in most
situations. The overhead involved in acquiring and releasing the semaphore can consume valuable time. Y ou can do
the job just as efficiently by disabling and enabling interrupts (see section 2.19.01, Mutual Exclusion, Disabling and
Enabling Interrupts). Let's suppose that two tasks are sharing a 32-bit integer variable. The first task increments the
variable while the other task clearsit. If you consider how long a processor takes to perform either operation, you will
realize that you do not need a semaphore to gain exclusive access to the variable. Each task simply needs to disable
interrupts before performing its operation on the variable and enable interrupts when the operation is complete. A
semaphore should be used, however, if the variable is a floating-point variable and the microprocessor doesn't support
floatingpoint in hardware. In this case, the processing time involved in processing the floating-point variable could
affect interrupt latency if you had disabled interrupts.

BufFreeList

Next 7| Next | Next 7% 0

4 A
v 10 v

BufReq() [€¢—> L<———+ BufRel()

\\\ \\\\ //’
\ N e / Buffer Manager
\\ S~ - //
\ X< /
\ /// N /
// \A /

Figure2-11, Using a counting semaphore.



2.20 Deadlock (or Deadly Embrace)

A deadlock, also called adeadlyembrace, isasituation in which two tasks are each unknowingly waiting for resources
held by each other. If task T1 hasexclusive accessto resource R1 and task T2 has exclusive accessto resource R2, then
if T1 needs exclusive access to R2 and T2 needs exclusive access to R1, neither task can continue. They are
deadlocked. The simplest way to avoid adeadlock isfor tasksto:

a) acquire all resources before proceeding,
b) acquire the resources in the same order, and
¢) release the resources in the reverse order.

Most kernelsallow you to specify atimeout when acquiring asemaphore. Thisfeature allowsadeadlock to be broken.
If the semaphore is not available withing a certain amount of time, the task requesting the resource will resume
execution. Some form of error code must be returned to the task to notify it that atimeout has occurred. A return error

code prevents the task from thinking it has obtained to the resource. Deadl ocks generally occur in large multitasking
systems and are not generally encountered in embedded systems.

2.21 Synchronization

A task can be synchronized with an | SR, or another task when no data is being exchanged, by using a semaphore as
shown in Figure 2-12. Note that, in this case, the semaphore is drawn as aflag, to indicate that it is used to signal the

occurrence of an event (rather than to ensure mutual exclusion, in which case it would be drawn as akey). When used
as a synchronization mechanism, the semaphoreisinitialized to 0. Using a semaphore for thistype of synchronization

isusing what is called a unilateral rendezvous A task initiates an 1/O operation and then waits for the semaphore.
When the |/O operation is complete, an ISR (or another task) signals the semaphore and the task is resumed.

ISR = Fim».
J@L.Fﬂul..

Figure 212, Synchronizing tasks and | SRs.

If the kernel supports counting semaphores, the semaphore would accumul ate events that have not yet been processed.

Note that more than one task can be waiting for the event to occur. In this case, the kernel could signal the occurrence
of the event either to:

a) the highest priority task waiting for the event to occur, or
b) the first task waiting for the event.

Depending on the application, more than one ISR or task could signal the occurrence of the event.



Twotaskscan synchronizetheir activitiesby usingtwo semaphores, asshownin Figure2-13. Thisiscalled abilateral
rendezvous A bilateral rendezvousis similar to aunilateral rendezvous except both tasks must synchronize with one

another before proceeding.
y I PEND
PEND F POST

Figure 2-13, Tasks syndronizing ther activities.

For exampl e, two tasks are executing as shown in listing 2.10. When the first task reaches a certain point, it signals the
second task L2.10(1) and then waits for a signal from the second task L2.10(2). Similarly, when the second task
reaches a certain point, it signalsthe first task L2.10(3) and then waitsfor asignal from the first task L2.10(4). At this
point, both tasks are synchronized with each other. A bilateral rendezvous cannot be performed between atask and an
ISR because an | SR cannot wait on a semaphore.

Task1()

for (;;) {

Per f or m oper ati on;

Signal task #2; (1)
Wit for signal fromtask #2; (2)
Cont i nue operati on;
}
}
Task2()
for (5;) {
Per f or m oper ati on;
Signal task #1; (3)
Wait for signal fromtask #1; (4)
Cont i nue operati on;
}
}

Listing 2.10, Bilateral rendezvous.

2.22 Event Flags



Event flags are used when a task needs to synchronize with the occurrence of multiple events. The task can ke
synchronized when any of the events have occurred. This is called disjunctive synchronization (logical OR). A task

can also be synchronized when all events have occurred. This is called conjunctive synchronization (logical AND).
Disjunctive and conjunctive synchronization are shown in Figure 2-14.

Common events can be used to signal multiple tasks, as shown in Figure 215. Events are typically grouped.
Depending on the kernel, agroup consists of 8, 16 or 32 events (mostly 32-bits, though). Tasks and I SRs can set or
clear any event in agroup. A task isresumed when all the eventsit requires are satisfied. The evaluation of which task

will be resumed is performed when anew set of events occurs (i.e. during a SET operation).

Kernels supporting event flags offer services to SET event flags, CLEAR event flags, and WAIT for event flags
(conjunctively or digunctively). p C/OS-I1 does not currently support event flags.

~
~

’ A
|' ‘\
! TASK }
A 4
R TTY Events Semaphore

I 3 OR POST > F PEND>

{ ISR
"""" DISJUNCTIVE SYNCHRONIZATION
} TASK !
\.--"‘: Events Semaphore
+ §AN POST> F PEND>
{ ISR }

CONJUNCTIVE SYNCHRONIZATION

Figure 2-14, Digunctive and conjunctive synchronization.
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Figure 2-15, Event flags.

2.23 I ntertask Communication

It is sometimes necessary for atask or an ISR to communicate information to another task. Thisinformation transfer is
called intertask communication. I nformation may be communicated between tasksin two ways: through global dataor

by sending messages.

When using global variables, each task or ISR must ensure that it has exclusive access to the variables. If an ISR is
involved, the only way to ensure exclusive access to the common variables is to disable interrupts. If two tasks are
sharing data each can gain exclusive access to the variables by using either disabling/enabling interrupts or through a
semaphore (as we have seen). Note that atask can only communicate information to an I SR by using global variables.
A task is not aware when a global variable is changed by an ISR unless the | SR signals the task by using a semaphore
or by having the task regularly poll the contents of the variable. To correct this situation, you should consider using

either amessage mailbox or amessage queue.



2.24 Message Mailboxes

Messages can be sent to a task through kernel services. A Message Mailbox, also called a message exchange, is
typically a pointer size variable. Through a service provided by the kernel, atask or an I SR can deposit a message (the
pointer) into this mailbox. Similarly, one or more tasks can receive messages through a service provided by the kernel.
Both the sending task and receiving task will agree asto what the pointer is actually pointing to.

A waiting list is associated with each mailbox in case more than one task desires to receive messages through the
mailbox. A task desiring to receive a message from an empty mailbox will be suspended and placed on the waiting list
until amessage isreceived. Typically, the kernel will allow the task waiting for a message to specify atimeout. If a
message is not received before the timeout expires, the requesting task is made ready-to-run and an error code
(indicating that a timeout has occurred) is returned to it. When a message is deposited into the mailbox, either the
highest priority task waiting for the message is given the message (called priority-based) or thefirst task to request a
message is given the message (called First-In-First-Out, or FIFO). Figure 2- 16 showsatask depositing amessageinto
a mailbox. Note that the mailbox is represented graphically by an I-beam and the timeout is represented by an

hourglass. The number next to the hourglass represents the number of clock ticks (described later) that the task will
wait for amessageto arrive.

Mailbox
PO PEND >
X0

Figure 2-16, M essage mailbox.

Kernel servicesaretypically provided to:

a) Initializethe contents of amailbox. The mailbox may or may not initially contain a message.

b) Deposit amessage into the mailbox (POST).

c) Wait for amessage to be deposited into the mailbox (PEND).

d) Get a message from a mailbox, if one is present, but not suspend the caller if the mailbox is empty
(ACCEPT). If the mailbox contains a message, the message is extracted from the mailbox. A return code
isused to notify the caller about the outcome of the call.

Message mailboxes can also be used to simulate binary semaphores. A message in the mailbox indicates that the
resource is available while an empty mailbox indicates that the resource is already in use by another task.



2.25 Message Queues

A message queue is used to send one or more messages to atask. A message queueis basically an array of mailboxes.
Through a service provided by the kernel, atask or an ISR can deposit a message (the pointer) into a message queue.
Similarly, one or more tasks can receive messages through a service provided by the kernel. Both the sending task and
receiving task will agree as to what the pointer is actually pointing to. Generally, the first message inserted in the
queue will be the first message extracted from the queue (FIFO). In addition to extract messagesin a FIFO fashion,
HC/OS I allows atask to get messages Last-In-First-Out (LIFO).

As with the mailbox, a waiting list is associated with each message queue in case more than one task is to receive
messages through the queue. A task desiring to receive a message from an empty queue will be suspended and placed
onthewaiting listuntil amessageisreceived. Typically, thekernel will allow thetask waiting for amessageto specify
atimeout. If amessageisnot received beforethetimeout expires, therequesting task ismadeready-to-run and an error
code (indicating atimeout occurred) is returned to it. When a message is deposited into the queue, either the highest
priority task or the first task to wait for the message will be given the message. Figure 2-17 shows an I SR (Interrupt
Service Routine) depositing a message into a queue. Note that the queueisrepresented graphically by adouble | -beam.
The 10 indicates the number of messages that can be accumulated in the queue. A 0 next to the hourglassindicates

that the task will wait forever for amessage to arrive.
Kernel servicesaretypically provided to:

a) Initialize the queue. The queue is always assumed to be empty after initialization.

b) Deposit amessage into the queue (POST).

c) Wait for amessage to be deposited into the queue (PEND).

d) Getamessagefromaqueue, if oneispresent, but not suspend the caller if the queueisempty (ACCEPT).
If the queue contained a message, the message is extracted from the queue. A return code is used to
notify the caller about the outcome of the call.

Queue

Interrupt:P = 10 —XEEND—P
0

Figure 2-17, M essage queue.

2.26 Interrupts

An interrupt is a hardware mechanism used to inform the CPU that an asynchronous event has occurred. When an
interrupt isrecognized, the CPU savespart (or al) of itscontext (i.e. registers) and jumpsto aspecial subroutine called
anInterrupt ServiceRoutine, or ISR. The | SR processesthe event and upon completion of thel SR, the program returns
to:

a) Thebackground for aforeground/background system.
b) Theinterrupted task for a non-preemptive kernel.
c) Thehighest priority task ready-to-run for apreemptive kernel.

Interrupts allow a microprocessor to process events when they occur. This prevents the microprocessor from
continuously polling an event to see if this event has occurred. Microprocessors allow interrupts to be ignored and
recognized through the use of two special instructions. disable interrupts and enable interrupts, respectively. In a
real-time environment, interrupts should be disabled as little as possible. Disabling interrupts affects interrupt latency
(see section 2.27, Interrupt Latency) and also, disabling interrupts may cause interrupts to be missed. Processors



generally allow interrupts to benested. This means that while servicing an interrupt, the processor will recognize and
service other (more important) interrupts as shown in Figure 2-18.
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TASK [
ISR #1 I

ISR #2 |
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/
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Interrupt #1

//
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Interrupt #2

e
7
I

Interrupt #3
Figure 2-18, Interrupt nesting.

2.27 Interrupt Latency

Probably the most important specification of a real-time kernel is the amount of time interrupts are disabled. All
real-time systems disable interrupts to manipulate critical sections of code and re-enable interrupts when the critical
section has executed. The longer interrupts are disabled, the higher theinterruptlatency. Interrupt latency isgiven by:

Maximum amount of timeinterruptsaredisabled +
Timeto start executing thefirst instruction in the | SR

Equation 2.2, Interrupt latency.
2.28 Interrupt Response

Interrupt response is defined as the time between the reception of the interrupt and the start of the user code which will
handle the interrupt. The interrupt response time accounts for all the overhead involved in handling an interrupt.

Typically, the processor's context (CPU registers) is saved on the stack before the user code is executed.

For a foreground/background system, the user ISR code is executed immediately after saving the processor's context.
Theresponse timeisgiven by:

Interrupt latency +
Timeto savethe CPU's context




Equation 2.3, Interrupt response, foreground/background system.

For a non-preemptive kernel, the user ISR code is executed immediately after the processor's context is saved. The
response time to an interrupt for a non-preemptive kernel is given by:

Interrupt latency +
Timeto savethe CPU's context

Equation 24, Interrupt response, Non-preemptive kerndl.

For apreemptive kernel, a special function provided by the kernel needsto be called. This function notifies the kernel

that an ISR isin progress and allows the kernel to keep track of interrupt nesting. For p C/OS I, thisfunctionis called
OSI nt Ent er () . Theresponsetimeto an interrupt for a preemptive kernel is given by:

Interrupt latency +
Timeto savethe CPU's context +
Execution timeof thekernel I SR entry function

Equation 2.5, Interrupt response, Preemptive kernd.

A system's worst case interrupt response time isitsonly response. Y our system may respond to interruptsin 50 u S 99

percent of the time, but if it responds to interruptsin 250 u S the other 1 percent, you must assume a 250 | S interrupt
response time.

2.29 Interrupt Recovery

Interrupt recovery is defined as the time required for the processor to return to the interrupted code.

Interrupt recovery in aforeground/background system simply involves restoring the processor's context and returning
to the interrupted task. Interrupt recovery is given by:

Timetorestorethe CPU'scontext +
Timeto executethereturn from interrupt instruction

Equation 2.6, Interrupt recovery, Foreground/background system.

Aswith aforeground/background system, interrupt recovery with a non-preemptive kernel simply involves restoring
the processor's context and returning to the interrupted task. Interrupt recovery isthus:

Timetorestorethe CPU'scontext +
Timeto executethereturn from interrupt instruction

Equation 2.7, Interrupt recovery, Non-preemptive kerndl.

For a preemptive kernel, interrupt recovery is more complex. Typically, afunction provided by the kernel is called at
the end of the ISR. For p C/OSH I, this function is called OSI nt Exi t () and alows the kernel to determine if all

interruptshave nested. If all interruptshave nested (i.e. areturnfrominterrupt will returntotask level code), the kernel




will determine if a higher priority task has been made ready-to-run as a result of the ISR. If a higher priority task is
ready-to-run as aresult of the ISR, this task is resumed. Note that, in this case, the interrupted task will be resumed

only when it again becomes the highest priority task ready -to-run. For a preemptive kernel, interrupt recovery is given
by:

Timeto determineif ahigher priority task isready +
Timeto restorethe CPU's context of the highest priority task +
Timeto executethereturn from interrupt instruction

Equation 2.8, Interrupt recovery, Non-preemptive kerndl.

2.30 Interrupt Latency, Response, and Recovery

Figures2-19, 2-20 and 2-21 show the interrupt latency, response, and recovery for aforeground/background system, a
non-preemptive kernel, and a preemptive kernel, respectively.
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Figure 2-19, Interrupt latency, response, and recovery
(Foreground/Background)
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Figure 2-20, Interrupt latency, response, and recovery
(Non-preemptive kernd)

Y ou should note that for a preemptive kernel, the exit function either decidesto return to the interrupted task F2-21A
or to ahigher priority task that the ISR has made ready-to-run F2-21B. In the later case, the execution timeis slightly
longer because the kernel has to perform a context switch. | made the difference in execution time somewhat to scale
assuming L C/OS-11 on an Intel 80186 processor (see Table 9.3, Execution times of g C/OS-11 services on 33 MHz
80186). Thisalowsyou to seethe cost (in execution time) of switching context.
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2.31 1SR Processing Time

While I SRs should be as short as possible, there are no absol ute limits on the amount of time for an I SR. One cannot
say that an | SR must always be lessthan 100 1 S, 500 p S, 1 mS, etc. If the ISR's code is the most important code that
needs to run at any given time, then it could be as long as it needs to be. In most cases, however, the ISR should
recognize the interrupt, obtain data/status from the interrupting device, and signal atask which will perform the actual
processing. Y ou should also consider whether the overhead involved in signaling atask is more than the processing of
the interrupt. Signaling atask from an ISR (i.e. through a semaphore, a mailbox, or a queue) requires some processing
time. If processing of your interrupt requires less than the time required to signal a task, you should consider

processing the interrupt in the ISR itself and possibly enable interrupts to allow higher priority interrupts to be
recognized and serviced.

2.32 Non-Maskable I nterrupts (NMI s)

Sometimes, an interrupt must be serviced as quickly as possible and cannot afford to have the latency imposed by a
kernel. In these situations, you may be able to use the Non-Maskable Interrupt (NMI) provided on most
microprocessors. Since the NMI cannot be disabled, interrupt latency, response, and recovery are minimal. The NM|
is generally reserved for drastic measures such as saving important information during a power down. If, however,
your application doesn't have this requirement, you could use the NMI to service your most time-critical ISR.
Equations 2.9, 2.10 and 2.11 shows how to determine the interrupt latency, response and recovery of an NMI,
respectively.



Timeto execute longest instruction +
Timeto gtart executingthe NMI ISR

Equation 2.9, Interrupt latency for an NMI.

Interrupt latency +
Timeto savethe CPU's context

Equation 2.10, Interrupt response for an NM1.

Timetorestorethe CPU's context +
Timeto executethereturn from interrupt instruction

Equation 2.11, Interrupt recovery of an NMI.

I have used the NMI in an application to respond to an interrupt which could occur every 150 pu S. The processing time
of the ISR took from 80 to 125 p S and the kernel | used disabled interrupts for about 45 p S. Asyou can see, if | had
used maskabl e interrupts, the ISR could have been late by 20 i S.

When you are servicing an NMI, you cannot use kernel servicesto signal atask because NMIs cannot be disabled to
access critical sections of code. Y ou can, however, still pass parametersto and from the NMI. Parameters passed must
be global variables and the size of these variables must be read or written indivisibly, that is, not as separate byte read
or writeinstructions.

NMIs can be disabled by adding external circuitry, as shown in Figure 2-22. Assuming that both the interrupt and the

NMI are positive going signals, asimple AND gate isinserted between the interrupt source and the processor's NM|

input. Interrupts are disabled by writing a 0 to an output port. You wouldn't want to disable interrupts to use kernel
services, but you could use thisfeature to pass parameters (i.e. larger variables) to and from the ISR and a task.

NMI Interrupt Source—

Output }To Processor's NMI Input
Port

Figure 2-22, Disabling non-maskable interrupts.

Now, lets suppose that the NMI service routine needs to signal a task every 40 times it executes. If the NMI occurs
every 150 u S, asignal would be required every 6 mS (40 x 150 pu S). From aNMI ISR, you cannot use the kernel to
signal the task, but you could use the scheme shown in Figure 2-23. In this case, the NMI service routine would
generate a hardware interrupt through an output port (i.e. bringing an output high). Since the NMI service routine
typically has the highest priority and, interrupt nesting is typically not allowed while servicing the NMI ISR, the
interrupt would not be recognized until the end of the NMI service routine. At the completion of the NMI service
routine, the processor would be interrupted to service this hardware interrupt. This ISR would clear the interrupt




source (i.e. bring the port output low) and post to asemaphorethat would wake up thetask. Aslong asthetask services
the semaphore well within 6 mS, your deadline would be met.

Issues interrupt by writing
to an output port.
I>; Semaphore

NMllnterrum:’{ ISR oot = e

Figure 223, Signaling a task from a non-maskable interrupt.

2.33 Clock Tick

A clocktick isaspecial interrupt that occurs periodically. Thisinterrupt can be viewed as the system's heartbeat. The
timebetweeninterruptsisapplicationspecific and isgenerally between 10 and 200 mS. The clock tick interrupt allows
akernel to delay tasksfor anintegral number of clock ticks and to provide timeouts when tasks are waiting for events
to occur. The faster thetick rate, the higher the overhead imposed on the system.

All kernelsallow tasksto be delayed for acertain number of clock ticks. Theresolution of delayed tasksis 1 clock tick,
however, this does not mean that its accuracy is 1 clock tick.

Figures 2-24 through 226 are timing diagrams showing a task delaying itself for 1 clock tick. The shaded areas
indicate the execution time for each operation being performed. Note that the time for each operation varies to reflect
typical processing, which would include loops and conditional statements (i.e., if/else, switch and ?:). The processing
time of the ‘Tick ISR’ has been exaggerated to show that it too is subject to varying execution times.

Case 1 (Figure 2-24) shows a situation where higher priority tasks and I SRs execute prior to the task, which needsto
delay for 1 tick. Asyou can see, the task attempts to delay for 20 mS but because of its priority, actually executes at
varying intervals. Thiswill thus cause the execution of the task tojitter.
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Figure 224, Ddaying a task for 1 tick (case #1).



Case 2 (Figure 2-25) shows a situation where the execution times of all higher-priority tasks and ISRs are slightly less
than onetick. If thetask delaysitself just before a clock tick, the task will execute again almost immediately! Because
of this, if you need to delay atask for at least 1 clock tick, you must specify one extratick. In other words, if you need
to delay atask for at least 5 ticks, you must specify 6 ticks!
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Figure 2-25, Delaying a task for 1 tick (case #2).

Case 3 (Figure 2-26) shows a situation where the execution times of all higher-priority tasks and 1SRs extend beyond
one clock tick. In this case, the task that triesto delay for 1 tick will actually execute 2 ticks later! In this case, the task

missed its deadline. This might be acceptable in some applications, but in most casesit isn't.
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Figure 2-26, Delaying a task for 1 tick (case #3).



These situations exist with all reattime kernels. They are related to CPU processing load and possibly incorrect
system design. Here are some possibl e solutions to these problems:

a) Increasetheclock rate of your microprocessor.

b) Increasethetime between tick interrupts.

c) Rearrangetask priorities.

d) Avoid using floating-point math (if you must, use single precision).

e) Getacompiler that performs better code optimization.

f)  Writetime-critical code in assembly language.

g) |If possible, upgrade to a faster microprocessor in  the same family, eg,

8086 to 80186, 68000 to 68020, etc.

Regardless of what you do, jitter will always occur.

2.34 Memory Requirements

If you are designing a foreground/background system, the amount of memory required depends solely on your
application code.

With a multitasking kernel, things are quite different. To begin with, akernel requires extra code space (ROM). The
size of the kernel depends on many factors. Depending on the features provided by the kernel, you can expect
anywhere from 1 Kbytes to 100 Kbytes. A minimal kernel for an 8-bit CPU that provides only scheduling, context
switching, semaphore management, delays, and timeouts should require about 1 to 3 Kbytes of code space. The total
code space isthus given by:

Application code size +
Kernel codesize

Equation 2.12, Code space needed when a kernel isused.

Because each task runs independently of the other, each task must be provided with its own stack area (RAM). Asa
designer, you must determine the stack requirement of each task as closely as possible (this is sometimes a difficult
undertaking). The stack size must not only account for the task requirements (local variables, function calls, etc.); the
stack size must al so account for maximum interrupt nesting (saved registers, local storagein I SRs, etc.). Depending on
the target processor and the kernel used, a separate stack can be used to handle all interrupt-level code. Thisis a
desirablefeature because the stack requirement for each task can be substantially reduced. Another desirablefeatureis
the ability to specify the stack size of each task on an individual basis (1 C/OSI1 permits this). Conversely, some
kernelsrequire that all task stacks be the same size. All kernelsrequire extra RAM to maintain internal variables, data
structures, queues, etc. Thetotal RAM required if the kernel does not support a separate interrupt stack is given by:

Application coderequirements +
Data space (i.e. RAM) needed by thekernel +
SUM (task stacks + MAX(I SR nesting))

Equation 2.13, Data space needed when a kernel is used.

If the kernel supports a separate stack for interrupts, the total RAM required is given by:

Application coderequirements +
Data space (i.e. RAM) needed by thekernel +
SUM (task stacks) +
MAX(I SR nesting)

Equation 2.13, Data space needed when a kernd is used.




Unless you have large amounts of RAM to work with, you will need to be careful about how you use the stack space.
To reduce the amount of RAM needed in an application, you must be careful about how you use each task's stack for:

a) largearraysand structures declared locally to functions and I SRs
b) function (i.e., subroutine) nesting

c) interrupt nesting

d) library functions stack usage

e) function calls with many arguments

To summarize, a multitasking system will require more code space (ROM) and data space (RAM) than a
foreground/background system. The amount of extra ROM depends only on the size of the kernel, and the amount of
RAM depends on the number of tasksin your system.

2.35 Advantages and Disadvantages of Real-Time Kernels

A real-time kernel, also called a Real-Time Operating System or RTOS, allows reaktime applications to be easily
designed and expanded; functions can be added without requiring major changes to the software. The use of an RTOS
amp lifies the design process by splitting the application code into separate tasks. With a preemptive RTOS, all
time-critical events are handled as quickly and as efficiently as possible. An RTOS allow you to make better use of
your resources by providing youwith precious services such as semaphores, mailboxes, queues, timedel ays, timeouts,
etc.

Y ou should consider using a real-time kernel if your application can afford the extra requirements: extra cost of the
kernel, more ROM/RAM, and 2 to 4 percent additional CPU overhead.

The onefactor | haven't mentioned so far is the cost associated with the use of areal-time kernel. In some applications,
cost is everything and would preclude you from even considering an RTOS.

There are currently about 80+ RTOS vendors. Products are available for 8-, 16-, and 32-bit microprocessors. Some of
these packages are complete operating systems and include not only the real-time kernel but also an input/output
manager, windowing systems (display), a file system, networking, language interface libraries, debuggers, and
cross-platform compilers. The cost of an RTOS varies from $50 to well over $30,000. The RTOS vendor may also
require royalties on a per-target-system basis. Thisis like buying a chip from the RTOS vendor that you include with
each unit sold. The RTOS vendors call thissilicon software. The royalty fee varies between $5 to about $250 per unit.
Like any other software package these days, you also need to consider the maintenance cost, which can set you back
another $100 to $5,000 per year!

2.36 Real-Time Systems Summary

Table 2.2 summarizes the three types of real-time systems: foreground/background, non-preemptive kernel, and
preemptive kernel.

For eground/Background Non-Preemptive Kernel Preemptive Kernel
Interrupt |atency MAX( Lon_gest i_nstruct ion, MAX( Longest i _nstrucri on, MAX( Longest i nstruct ion,
. User int. disable) + User int. disable, User int. disable,
(Tlme) Vector to ISR Kernel int. disable) + Kernel int. disable) +
Vector to ISR Vector to ISR
Interrupt response Int. latency + Int. latency + Interrupt latency +
. Save CPU s context Save CPU s context Save CPU s context +
(TImE) Kernel 1SR entry function
|nterrupt recovery Restore background’ s context + Restore taski s context + Find hi gh_est pri or_i ty_ task +
. Return fromint. Return fromint. Restore highest priority
(Time) task’s context +
Return frominterrupt
Task response Backgr ound L_onges? task + o Find hi ghe_st priority task +
. Find highest priority task + Context switch
(Time) Cont ext swi tch
ROM size Application code Application code + Application code +
Kernel code Kernel code
1 Application code Application code + Application code +
RAM size Kernel RAM + Kernel RAM +




SUM Task stacks + SUM Task stacks +
MAX( | SR st ack)) MAX( | SR st ack))

Services available? Application code nust provide Yes Yes

Table 2.2, Real-time sysems summary.




Chapter 3

Kerndl Structure

This chapter describes some of the structural aspects of g C/OS-1. You will learn:

How p C/OS-11 handles access to critical sections of code,

What atask is, and how p G/OSH1 knows about your tasks,

How tasks are scheduled,

How p C/OS11 can determine how much of CPU your application is using,
How do to write Interrupt Service Routines (I1SRs),

What aclock tick isand how p C/OS-II handlesiit,

How toinitidize u C/OS-11 and,

How to start multitasking.

This chapter also describes the following application services:

OS_ENTER _CRI TI CAL() and OS_EXI T_CRI Tl CAL(),
oslnit(),

oSstart(),

OSIntEnter() andOSI nt Exi t (),

OSSchedLock() and OSSchedUnl ock() and,
OSVersion() .

3.00 Critical Sections

H C/OSH| like all real-time kernels need to disable interruptsin order to access critical sections of code, and re-enable
interrupts when done. This alows p C/OSH | to protect critical code from being entered simultaneously from either
multiple tasks or ISRs. Theinterrupt disable timeis one of the most important specifications that areal -time kernel
vendor can providebecauseit affectstheresponsiveness of your systemto real-timeevents. p C/OS-11 triesto keep the
interrupt disable time to a minimum but, with p C/OS-I1, interrupt disabletimeislargely dependent on the processor
architecture, and the quality of the code generated by the compiler. Every processor generally providesinstructions to
disable/enable interrupts and your C compiler must have a mechanism to perform these operations directly from C.
Some compilerswill allow you to insert in-line assembly language statements in your C source code. This makes it
quite easy to insert processor instructions to enable and disable interrupts. Other compilers will actually contain
language extensions to enable and disable interrupts directly from C. To hide the implementation method chosen by
the compiler manufacturer, p C/OS-11 defines twomacrosto disable and enable interrupts: OS_ENTER_CRI Tl CAL()
and OS_EXI T_CRI Tl CAL( ) , respectively. Because these macros are processor specific, they are found in afile

called OS_CPU. H. Each processor port will thus haveits own OS_CPU. Hfile.

Chapters 8, Porting p C/OS-I1 and chapter 9, 80x86, Large Model Port provide additional details with regards to these
two macros.

3.01 Tasks



A task istypically aninfiniteloop function L3.1(2) asshowninListing 3.1. A task looksjust like any other C function
containing areturn type and an argument but, it never returns. The return type must always be declared to bevoi d

L3.1(2).

voi d Your Task (void *pdata) (1)
{
for (5:) { (2)
/* USER CODE */
Call one of uC/ CS-11's services:
OSMhoxPend() ;
OSQPend() ;
OSSerPend() ;
OSTaskDel (OS_PRI O _SELF) ;
OSTaskSuspend(OS_PRI O_SELF) ;
OSTi meDl y() ;
OSTi neDl yHVMSM) ;
/* USER CODE */

Listing 3.1, A task is an infinite loop.

Alternatively, thetask candel eteitself upon completion asshowninListing 3.2. Notethat thetask codeisnot actually
deleted, p C/OS-11 simply doesn’t know about the task anymore and thus that code will not run. Also, if thetask calls
OSTaskDel () , thetask code doesn’t return back to anything.

voi d Your Task (void *pdata)

/* USER CODE */
OSTaskDel (OS_PRI O _SELF) ;

Listing 3.2, A task that deletesitsdf when done.

The argument L3.1(1) is passed to your task code when the task first starts executing. You will notice that the
argument is a pointer to avoi d. Thisallows your application to pass just about any kind of data to your task. The
pointer is a ‘universal’ vehicle to pass to your task the address of a variable, a structure or even the address of a
function if necessary! It is possible (see Example #1 in Chapter 1) to create many identical tasks all using the same
function (or task body). For example, you could have4 serial portsthat are each managed by their owntask. However,
the task code is actually identical. Instead of copying the code 4 times, you can create a task that receives as an
argument a pointer to adata structure that defines the serial port’s parameters (baud rate, I/0 port addresses, interrupt
vector number, €tc.).

p C/OSH | can manage up to 64 tasks, however, the current version of p C/OS-I1 usestwo tasks for system use. Also, |
decided toreserveprioritiesO, 1,2,3,05_LONEST_PRI O- 3,0S_ LOWEST_PRI O-2,0S_LOWEST_PRI G 1 and

OS_LOWEST_PRI Ofor future use. OS_LOWEST_PRI Ois a #def i ne constant which is defined in the file
OS_CFG. H. You can thus have up to 56 application tasks. Each task must be assigned a unique priority level from 0
to OS_LOWEST_PRI O — 2. The lower the priority number, the higher the priority of the task. pC/OS- 11 always
executes the highest priority task ready to run. In the current version of p C/OS 11, the task priority number also serves

as the task identifier. The priority number (i.e. task identifier) is used by some kernel services such as
OSTaskChangePri o() andOSTaskDel ().

In order for p C/OSA | to manage your task, you must ‘create’ atask. Y ou create atask by passing its address along
with other arguments to one of two functions: OSTaskCreate() or OSTaskCreateExt().




OSTaskCr eat eExt () isan‘extended’ version of OSTaskCr eat e() and provides additional features. These
two functions are explained in Chapter 4, Task Management.

3.02 Task States

Figure 31 showsthe state transition diagram for tasks under p C/OS11. At any given time, atask can bein any one of
five states.

OSMBoxPost() OSMBoxPend()
0SQPost() 0SQPend()
0SQPostFront()

0SSemPost() 0SSemPend()
OSTaskResume() OSTaskSuspend()
OSTimeDlyResume() OSTimeDly()
OSTimeTick() OSTimeDlyHMSM()

OSTaskDel()

OSTaskCreate()
OSTaskCreateExt()

OSStart()
OSIntExit()
0S TASK SW()

Interrupt

DORMANT,
OSIntExit()

OSTaskDel()

QSTaskDel()

Figure 31, Task States

The DORMANT state corresponds to atask (see Listing 3.1 or Listing 3.2) which resides in program space (ROM or

RAM) but has not been made available to u C/OS-Il. A task is made available to u C/OS-I1 by calling either
OSTaskCr eat e() or OSTaskCr eat eExt (). When atask is created, it is made READY to run. Tasks may be
created before multitasking starts or dynamically by arunning task. When created by atask, if the created task hasa

higher priority than its creator, the created task isimmediately given control of the CPU. A task can return itself or
another task to the dormant state by callingOSTaskDel () .

Multitasking is started by calling OSSt art () . OSSt art () runs the highest priority task that is READY to run.
Thistask isthus placed in the RUNNING state. Only onetask can be running at any giventime. A ready task will not
run until all higher priority tasks are either placed in the wait state or are deleted.

The running task may delay itself for a certain amount of time by either calling OSTi neDl y() or

OSTi meDl yHVSM) . Thistask isthusWAITING for some time to expire and the next highest priority task that is
ready-to-run is immediately given control of the CPU. The delayed task is made ready to run by OSTi meTi ck()

when the desired time delay expires (see Section 3.11, Clock Tick).

The running task may also need to wait until an event occurs, by calling either OSSenPend( ) , OSMboxPend() or
OSQPend() . Thetask isthusWAITING for the occurrence of the event. When atask pends on an event, the next

highest priority task is immediately given control of the CPU. The task is made ready when the event occurs. The
occurrence of an event may be signaled by either another task or an ISR.



A running task can always be interrupted, unlessthe task or u C/OS 11 disablesinterrupts. Thetask thus entersthel SR
state. When an interrupt occurs, execution of the task is suspended and the | SR takes control of the CPU. The ISR

may make one or more tasks ready to run by signaling one or more events. In this case, before returning from the ISR,
H C/OSH | determines if the interrupted task is still the highest priority task ready to run. If a higher priority task is
made ready torun by the | SR then the new highest priority task isresumed. Otherwise, theinterrupted task isresumed.

When all tasks are either waiting for events or for time to expire then puC/OS-II executes the idle task,
OSTaskl dl e() .

3.03 Task Control Blocks (OS TCBs)

When atask is created, it is assigned a Task Control Block, OS_TCB (see Listing 3.3). A task control block is adata

structure that is used by p G/OS- | to maintain the state of atask when it is preempted. When the task regains control

of the CPU the task control block allows the task to resume execution exactly where it left off. AllOS_TCBsresidein
RAM. You will noticethat | organized the fieldsinOS_TCB to allow for data structure packing while maintaining a
logical grouping of members. An OS_TCB s initialized when atask is created (see Chapter 4, Task Management).

Below isadescription of each field in theOS_TCBdatastructure.

typedef struct os_tcb {

OS_STK * OSTCBSt kPt r ;

#i f OS_TASK CREATE_EXT_EN
voi d * OSTCBEXt Pt r;
OS_STK * OSTCBSt kBot t om
| NT32U OSTCBSt kSi ze;
| NT16U OSTCBOpt ;
| NT16U OSTCBI d;

#endi f

struct os_tcb *OSTCBNext ;
struct os_tcb *OSTCBPrev;

#if (OS_QEN & (OS_MAX QS >= 2)) || OS_MBOX_EN || OS_SEM EN

OS_EVENT * OSTCBEvent Pt r;
#endi f
#if (OS_QEN & (OS MAX Q@S >= 2)) || OS_MBOX_EN

voi d * OSTCBMs g;
#endi f

| NT16U OSTCBDI y;

| NT8U OSTCBSt at ;

| NT8U OSTCBPri o;

| NT8U OSTCBX;

| NT8U OSTCBY;

| NT8U OSTCBBI t X;

| NT8U OSTCBBI t Y;
#i f OS_TASK DEL_EN

BOOLEAN OSTCBDel Req;
#endi f
} OS_TCB;

Listing 3.3, u C/OS-11's Task Control Block




OSTCBSt kPt r contains a pointer to the current top of stack for thetask. u C/OS-11 allows each task to have
its own stack but just as important, each stack can be of any size. Some commercial kernels assume that all
stacks are the same size unless you write complex hooks. T his limitation wastes RAM when all tasks have
different stack requirements, because the largest anticipated stack size has to be allocated for all tasks.
OSTCBSt kPt r istheonly field in theOS_TCB data structure accessed from assembly language code (from

the context switching code). Placing OSTCBSt kPt r at the first entry in the structure makes accessing this
field easier from assembly language code.

OSTCBEXt Pt r isapointer to auser definable task control block extension. Thisallowsyou or the user of
HC/OS-11 to extend the task control block without having to change the source code for p C/OSII.
OSTCBExt Ptr is only used by OSTaskCreateExt() and thus, you will need to set
OS_TASK_CREATE_EXT_ENto 1to enablethisfield. You could create a data structure that contains the
name of each task, keep track of the execution time of the task, the number of times a task has been
switched-in and more (see Example #3). Notethat | decided to place this pointer immediately after the stack
pointer in case you need to access thisfield from assembly language. This makes cal culating the offset from
the beginning of the data structure easier.

OSTCBSt kBot t omis a pointer to the task’s stack bottom. If the processor’s stack grows from high
memory locations to low memory locations then OSTCBSt kBot t omwill point at the lowest valid memory
location for the stack. Similarly, if the processor’s stack grows from low memory locations to high memory
locations thenOSTCBSt kBot t omwill point at thehighest valid stack address. OSTCBSt kBot t omis used
by OSTaskSt kChk( ) tocheck thesizeof atask’sstack at run-time. Thisallowsyou determinethe amount
of free stack space available for each stack. Stack checking can only occur if you created a task with
OSTaskCr eat eExt () and thus, you will need to set OS_TASK_CREATE_EXT_ENto 1 to enable this
field.

OSTCBSt kSi ze isavariable that holds the size of the stack in number of elementsinstead of bytes. This

means that if a stack contains 1000 entries and each entry is 32-bit wide then the actual size of the stack is
4000 bytes. Similarly, a stack where entries are 16-bit wide would contain 2000 bytes for the same 1000
entries. OSTCBSt kSi ze is used by OSTaskSt kChk(). Again, this field is valid only if you set
OS_TASK_CREATE_EXT_ENto1.

OSTCBOpt isavariable that holds ‘options’ that can be passed to OSTask Cr eat eExt () . Because of this,
thisfield isvalid only if you set OS_ TASK_CREATE_EXT_ENto 1. pC/OS-1 currently only defines three
options (see uCOS_II.H): OS TASK OPT_STK CHK, OS _TASK OPT_STK CLR and,
OS_TASK_OPT_SAVE_FP. OS_TASK_OPT_STK_CHK is used to specify to OSTaskCr eat eExt ()

that stack checkingisenabled for thetask being created. OS_TASK_OPT_STK_CLR indicatesthat the stack
needs to be cleared when the task is created. The stack only needs to be cleared if you intend to do stack
checking. If you do not specify OS_TASK_OPT_STK_CLR and you create and del ete tasks then, the stack
checking will report incorrect stack usage. If you never delete atask onceit’s created and your startup code
clears all RAM then, you can save valuable execution time by NOT specifying this option. Passing

OS_TASK_OPT_STK_CLR will increase the execution time of OSTaskCr eat eExt () because it will
clear the content of the stack. The larger you stack, the longer it will take.  Finaly,
OS_TASK_OPT_SAVE_FP tells OSTaskCreat eExt () that the task will be doing floating-point
computations and, if the processor provides hardware assisted floating-point capability then, the
floating-point registers will need to be saved for the task being created and during a context switch.

OSTCBI d isavariable that is used to hold an identifier for thetask. Thisfield is currently not used and has
only been included for future expansion.

OSTCBNext and OSTCBPr ev are used to doubly link OS_TCBs. This chain of OS_TCBs is used by
OSTi meTi ck() toupdate the OSTCBDI y field for each task. TheOS_TCB for each task is linked when



the task is created and the OS_TCBis removed from the list when the task is deleted. A doubly linked listis
used to permit an element in the chain to be quickly inserted or removed.

OSTCBEvent Pt r isapointer to an event control block and will be described |ater (see Chapter 6, Intertask
Communication & Synchronization).

OSTCBMs g isapointer to amessage that is sent to atask. The use of thisfield will be described later (see
Chapter 6, Intertask Communication & Synchronization).

OSTCBDI vy is used when a task needs to be delayed for a certain number of clock ticks or a task needs to

pend for an event to occur with atimeout. In this case, thisfield contains the number of clock ticksthat the
task isallowed towait for the event to occur. Whenthisvalueiszerothetask isnot delayed or has no timeout
when waiting for an event.

OSTCBSt at containsthe state of the task. When OSTCBSt at is 0, the task isready to run. Other values
can be assigned to OSTCBSt at and these values are described inuCOS_1 1 . H.

OSTCBPr i o containsthetask priority. A high priority task hasalow OSTCBPr i o value (that is, the lower
the number, the higher the actual priority).

OSTCBX, OSTCBY, OSTCBBI t X andOSTCBBI t Y are used to accel erate the process of making atask ready

to run, or to make atask wait for an event (to avoid computing these valuesat runtime). The valuesfor these
fields are computed when the task is created or when the task's priority is changed. The values are obtained

asfollows:
OSTCBY = priority >> 3;
OSTCBBitY = OSMapThbl [priority >> 3];
OSTCBX = priority & 0x07;
OSTCBBI t X = OSMapTbl [priority & 0x07];

Ligting 3.4, Calculating OS TCB members.

OSTCBDel Req isaboolean which is used to indicate whether or not atask requested that the current task be
deleted. Theuse of thisfield will be described later (see Chapter 4, Task Management).

The maximum number of tasks (OS_MAX_TASKS) that an application can have is specified in OS_CFG H and
determines the number of OS_TCBs alocated by pu C/OS-11 for your application. Y ou can reduce the amount of RAM
needed by setting OS_MAX_TASKS to the number of actual tasks needed in your application. All OS_TCBs are
placed in OSTCBTDbI [ ] . Notethat p C/OSII allocatesOS_N_SYS TASKS (seeuCOS_I | . H) extraOS_TCBs for
internal use. One will be used for the idle task while the other will be used for the statistic task (if

OS_TASK_STAT_ENissettol1). Whenu C/OS I isinitialized, all OS_TCBsinthistablearelinkedinasingly linked
list of freeOS_TCBsas shownin figure 3-2. When atask is created, the OS_TCB pointed to by OSTCBFr eelLi st is
assigned to the task and, OSTCBFr eeLi st is adjusted to point to the next OS_TCB in the chain. When atask is
deleted, itsOS_TCBis returned to the list of freeOS_TCBs.



OSTCBTbI[OS_MAX_TASKS+OS_N_SYS_TASK
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Figure3-2, Lig of free OS TCBs

3.04 Ready List

Each task is assigned a unique priority level between 0 andOS_LOWEST_PRI Q inclusively (see OS_CFG. H). Task
priority OS_LOWEST_PRI Ois aways assigned to the idle task when p C/OS 11 isinitiadlized. You should note that
OS_MAX_TASKS and OS_LOWEST_PRI Oare unrelated. You can have only 10 tasks in an application while still
having 32 priority levels (if you setOS_LOWEST_PRI Oto 31).

Each task that is ready to run is placed in aready list consisting of two variables, OSRAdyG p and OSRdyThbI [].
Task priorities are grouped (8 tasks per group) inOSRdy Gr p. Each bit in OSRdy Gr p is used to indicate whenever
any task in agroup is ready to run. When atask is ready to run it also sets its corresponding bit in the ready table,
OSRdyThbl []. Thesizeof OSRdy Tbhl [ ] dependson OS_LOWEST_PRI O(seeuCOS_I | . H). Thisallowsyouto

reduce the amount of RAM (i.e. data space) needed by p C/OSI1 when your application requires few task priorities.

To determine which priority (and thus which task) will run next, the scheduler deternines the lowest priority number
that hasitsbit set inOSRdy Thbl [ ] . The relationship between OSRdy G- p and OSRdy Tbl [ ] isshowninFigure 3-3

and is given by the following rules:

Bit0inOSRAy G p is1 when any bitin OSRdy Thl [ 0] is1.
Bit 1inOSRAy G p is1 when any bitin OSRdy Thl [ 1] is1.
Bit 2inOSRAy G p is1 when any bitin OSRdy Thl [ 2] is1.
Bit 3inOSRAy G p is1 when any bitin OSRdy Thbl [ 3] is1.
Bit 4inOSRdy G p is1 when any bitin OSRdy Thl [ 4] is1.
Bit 5inOSRdy Gr p is1 when any bitin OSRdy Thl [ 5] is1.
Bit 6inOSRAy G p is1 when any bitin OSRdy Thl [ 6] is1.
Bit 7inOSRdy G p is1 when any bitin OSRdy Thl [ 7] is1.
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Figure3-3, L C/OSI’'s Ready List

The following piece of codeis used to place atask in the ready list:

OSRdyGr p | = OSMapThbl [ prio >> 3];
OSRAyTbl [prio >> 3] |= OSMapTbl [prio & 0x07];

Ligting 3.5, Making a task ready-to-run.
where pri o isthetask's priority.
As you can see from Figure 33, the lower 3 bits of the task's priority are used to determine the bit position in
OSRdy Thbl [ ], while the next three most significant bits are used to determine the index into OSRdy Thl [ ]. Note

that OSMapTbl [] (seeOS_CORE. Q) isatablein ROM, used to equate an index from O to 7 to a bit mask as shown
in the table below:

Index |  Bit mask (Binary) |




00000001
00000010
00000100
00001000
00010000
(00100000
(01000000
10000000

Table 3.1, Contents of OSMapTDhil([].

~NoO|O|h|WIN[F|O

A task isremoved from the ready list by reversing the process. The following code is executed in this case:

if ((OSRdyTbl [prio >> 3] &= ~OSMapThbl [prio & 0x07]) == 0)
OSRdyGrp &= ~OSMapTbl [prio >> 3];

Listing 3.6, Removing a task from theready list.

This code clears the ready bit of thetask inOSRdy Tbl [ ] and clearsthe bit in OSRdy G p only if all tasksin agroup
arenot ready torun, i.e. al bitsinOSRdy Tbl [ pri o >> 3] are0. Another table lookup is performed, rather than
scanning through the table starting with OSRdyTbl [ 0] to find the highest priority task ready to run.
OSUnMapTbl [ 256] isapriority resolution table (seeOS_CORE. C). Eight bits are used to represent when tasks are
ready in agroup. The least significant bit has the highest priority. Using this byte to index the table returns the bit
position of the highest priority bit set, anumber between 0 and 7. Determining the priority of the highest priority task
ready to run is accomplished with the following section of code:

y = OSUnMapThl [ OSRAyGr p] ;
X = OSUnMapTbl [ OSRdyTbl [y] ] ;
prio:(y << 3)+X;

Ligting 3.7, Finding the highest priority task ready-to-run.

For example, if OSRdyGr p contains 01101000 (binary) then the table lookup OSUnMapThbl [ OSRdy Gr p] would
yield avalue of 3, which correspondsto bit #3 inOSRdy Gr p. Notesthat bit positions are assumed to start on the right
with bit #0 being the rightmost bit. Similarly, if OSRdyTbl [ 3] contained 11100100 (binary) then
OSUnMapThbl [ OSRdy Thl [ 3] ] wouldresultinavalueof 2 (i.e. bit #2). Thetask priority (pri o) wouldthen be 26
(83* 8+ 2)! Getting apointer to theOS_TCBfor the corresponding task is done by indexing intoOSTCBPr i oThbl [ ]
using the task's priority.

3.05 Task Scheduling

p C/OSH | always executes the highest priority task ready to run. The determination of which task has the highest
priority and thus, which task will be next to run is determined by the scheduler. Task level scheduling is performed by
OSSched() . ISR level schedulingishandled by another function (OSI nt Exi t () ) and will bedescribed later. The

codefor OSSched() isshownin Listing 3.8.

M C/OSH I's task scheduling timeis constant irrespective of the number of tasks created in an application. OSSched()
exitsif called from an ISR (i.e. OSI nt Nest i ng > 0) or if scheduling has been disabled because your application
called OSSchedLock() atleast once (i.e. OSLockNesti ng >0) L3.8(1). If OSSched() isnot called from an
ISR and the scheduler is enabled thenOSSched() determinesthe priority of the highest priority task that is ready to
run L3.8(2). A task that isready to run hasits corresponding bit set inOSRdy Tbl [ ] . Once the highest priority task
has been found, OSSched() verifies that the highest priority task is not the current task. Thisis done to avoid an




unnecessary context switch L3.8(3). Note that p C/OS used to obtain OSTCBHi ghRdy and compared it with
OSTCBCur . On 8 and some 16-bit processors, this operation was relatively slow because comparison was made on
pointersinstead of 8-bit integersasitisnow doneinp C/OS-11. Also, thereisno point of lookingupOSTCBHi ghRdy
inOSTCBPri oTbl [ ] unlesswe actually need to do a context switch. The combination of comparing 8-bit values
instead of pointersand looking upOSTCBHi ghRdy only when needed should make pu C/OS-11 faster than uC/OSon 8
and some 16-bit processors.

voi d OSSched (voi d)

I NT8U vy;

OS_ENTER_CRI TI CAL() ;

if ((OSLockNesting | OSIntNesting) == 0) { (1)
y = OSUnMapThbl [ OSRdy G p] ; (2)
OSPri oHi ghRdy = (INT8U) ((y << 3) + OSUnMapTbl [ OSRdyThl[y]]); (2)
if (OSPrioH ghRdy != OSPrioCur) { (3)

OSTCBHi ghRdy = OSTCBPri oTbl [ OSPri oHi ghRdy] ; (4)

OSCt xSWCt r ++; (5)

OS_TASK_SW() ; (6)
}

}
OS_EXI T_CRI Tl CAL() ;

Listing 3.8, Task Scheduler

To perform a context switch, we need to have OSTCBH ghRdy point to the OS_TCB of the highest priority task
which is done by indexing into OSTCBPri oThl [] using OSPr i oHi ghRdy L3.8(4). Next, the statistic counter
OSCt xSwCt r is incremented to keep track of the number of context switches L3.8(5). Finaly, the macro
OS_TASK_SW() isinvoked to do the actual context switch L3.8(6).

A context switch simply consist of saving the processor registers on the stack of the task being suspended, and
restoring the registers of the higher-priority task fromits stack. Inpu C/OSII, the stack frame for aready task always
looks as if an interrupt has just occurred and all processor registers were saved onto it. In other words, al that
M C/OSH | hasto do to run aready task isto restore all processor registers from the task’s stack and execute a return
from interrupt. To switch context, you should implement OS_TASK_SW) so that you simulate an interrupt. Most

processors provide either software interrupt or TRAP instructions to accomplish this. The interrupt service routine

(ISR) or trap handler (also called the ‘exception handler’) MUST vector to the assembly language function
OSCt xSwW() . OSCt xSw( ) expects to have OSTCBHi ghRdy point to the OS_TCB of the task to switch in and
OSTCBCur point to the OS_TCB of the task being suspended. Refer to chapter 8, Porting u C/OS-II for additional
details on OSCt xSw( ) .

All of the codeinOSSched( ) isconsidered acritical section. Interruptsaredisabled to prevent | SRsfrom setting the

ready bit of one or more tasks during the process of finding the highest priority task ready to run. Note that
OSSched() could bewritten entirely in assembly language to reduce scheduling time. OSSched() was writtenin

Cfor readability, portability and also to minimize assembly language.

3.06 Locking and Unlocking the Scheduler

The OSSchedLock() function isused to prevent task rescheduling until its counterpart, OSSchedUnl ock() , is
called. The code for these functionsis shownin Listing 3.9 and 3.10. Thetask that callsOSSchedLock() keeps
control of the CPU even though other higher priority tasks are ready to run. Interrupts, however, are still recognized




and serviced (assuming interrupts are enabled). OSSchedLock() and OSSchedUnl ock() must be usedin pairs.
The variable OSLockNest i ng keeps track of the number of times OSSchedLock() has been called to allow for

nesting. This allows nested functions which contain critical code that other tasks cannot access. p C/OS 11 allows
nesting up to 255 levels deep. Scheduling is re-enabled when OSLockNesti ng is0. OSSchedLock() and

0SSchedUnl ock() must be used with caution because they affect the normal management of tasks by pu C/OS-II.

OSSchedUnl ock() calls the scheduler L3.10(2) when OSLockNest i ng has decremented to 0 L3.10(1) and
OSSchedUnl ock() iscalled from atask, because events could have made higher priority tasks ready to run while
scheduling was locked.

After calling OSSchedLock( ), your application must not make any system call that will suspend execution of the
current task, i.e, your application cannot call OSMooxPend(), OSQPend(), OSSenmPend(),
OSTaskSuspend( OS_PRI O SELF) , OSTi neDl y() or OSTi mneDl yHMSM ) until OSLockNest i ng returns
to 0. No other task will be allowed to run, because the scheduler islocked out and your system will lock up.

voi d OSSchedLock (voi d)

{
if (OSRunning == TRUE) {
OS_ENTER_CRI TI CAL() ;
OSLockNest i ng++;
OS_EXIT_CRI Tl CAL() ;
}
}

Listing 3.9, Locking the Scheduler

voi d OSSchedUnl ock (voi d)

if (OSRunning == TRUE) {
OS_ENTER _CRI TI CAL() ;

if (OSLockNesting > 0) {
OSLockNest i ng--;

if ((OSLockNesting | OSIntNesting) == 0) { (1)
OS_EXIT_CRI Tl CAL();
OSSched() ; (2)
} else {
OS EXIT_CRITI CAL();
}
} else {

OS_EXI T_CRI TI CAL() ;
}

Listing 3.10, Unlocking the Scheduler

Y ou may want to disable the scheduler when alow priority task needs to post messages to multiple mailboxes, queues
or semaphores (see Chapter 6, I ntertask Communication & Synchronization) and you don’t want a higher priority task
to take control until all mailboxes, queues and semaphores have been posted to.

3.07 Idle Task




M C/OS- | dways creates atask (a.k.a. the Idle Task) which is executed when none of the other tasksis ready to run.
Theidle task (OSTaskl dl e()) is always set to the lowest priority, i.e. OS_LOWEST_PRI O. OSTaskl! dl e()

does nothing but increment a 32-bit counter called OSI dl eCtr. OSI dl eCtr isused by the statistics task (see
Section 3.08, Statistic Task) to determine how much CPU time (in percentage) is actually being consumed by the
application software. The code for the idle task is shown below. Interrupts are disabled then enabled around the
increment because on 8-bit and most 16 -bit processors, a32-bit increment requires multiple instructions which must
be protected from being accessed by higher priority tasksor an ISR. Theidletask can never be deleted by application
software.

voi d OSTaskldl e (void *pdat a)

pdata = pdat a;

for (;;) {
OS_ENTER_CRI Tl CAL() ;
OSl dl eCtr ++;
OS_EXI T_CRI TI CAL() ;
}
}
Ligting 3.10, u C/OS11’s ldletask.
3.08 Statistics Task

M C/OS- 1 containsatask that provides run-time statistics. Thistask iscalled OSTask St at () and iscreated if you
set the configuration constant OS_TASK_STAT_EN (see OS_CFG. H) to 1. When enabled, OSTaskSt at () (see
OS_CORE. C) executes every second and computes the percentage of CPU usage. I1n other words, OSTask St at ()

will tell you how much of the CPU timeis used by your application, in percentage. Thisvalueisplaced in the variable
OSCPUUs age whichisasigned 8-bit integer. The resolution of OSCPUUs age is 1%.

If your application isto use the statistic task, you MUST call OSSt at | nit () (seeOS_CORE. O from thefirst and

only task created in your application during initialization. In other words, your startup code MUST create only one
task before calling OSSt art (). From this one task, you MUST call OSSt at | ni t () beforeyou create your other

application tasks. The pseudo-code below shows what needsto be done.

void main (void)

{
OSlnit(); /* Initialize uC/ OS-11 (1)*/
/* Install uC/OS-11's context switch vector */
/* Create your startup task (for sake of discussion, TaskStart()) (2)*/
CSstart () ; /[* Start nultitasking (3)*/
}

voi d TaskStart (void *pdata)

{
/* Install and initialize pC/OS-11"s ticker (4)*/
OSStatlnit(); /* Initialize statistics task (5)*/
/* Create your application task(s) */
for (;;) {
/* Code for TaskStart() goes here! */
}




Listing 3.11, Initializing the statistic task.

Because | mentioned that your application must create only onetask (i.e. TaskSt art () ), L C/OS-11 has only three
tasks to manage when nmai n() calls OSStart (): TaskStart (), OSTaskl dl e() and OSTaskStat ().

Please note that you don't have to call the startup task TaskSt art () — you can cal it anything you like. Your
startup task will have the highest priority because p C/OS-11 setsthe priority of theidletask toOS_LOWEST_PRI O

and the priority of the statistic task toOS_LOWEST_PRI O — 1 internaly.

Figure 34 illustrates the flow of execution when initializing the statistic task. The first function that you must call in
P C/OSH1 isCBI ni t () whichwill initidlize u C/OS-11 F3-4(1). Next, you need to install the interrupt vector that will

be used to perform context switches F3-4(2). Note that on some processors (specifically the Motorola 68HC11), there
isnoneedto’ ingdl’ avector b ecause the vector would already beresidentin ROM. Y ou must createTaskSt art ()

by calling either OSTaskCr eat e() or OSTaskCr eat eExt () F3-4(3). Once you are ready to multitask, you call
OSst art () whichwill scheduleTaskSt art () for execution because it has the highest priority F3-4(4).

Highest Priority 0S_LOWEST PRIO - 1 0S_LOWEST _PRIO
mai n() TaskStart () OSTaskSt at () OSTaskl dl e()
{ OSlnit(); (1) { { {

Install context switch vector; (2)
Create TaskStart(); (3)

osStart();
EI” 0 Scheduler > _
} Init uC/OS-11"s ticker; (5)
(4) osStatinit(): (6)
T OSTi rrleDl y(2); (7)
Scheduler P> while (OSStatRdy == FALSE) { (8)
) ) OSTi meTI y(2 sgc%nr:js)l; (9)
2 ticks cheduler
. > s
After 2 ticks foro(si éu)e{an; (10)
v (11) }
L e % e ()
imeDly(1 second);
2 seconds | Scheduler > foro(si iﬂ) {Ct o
1 second ; After 1 second eCtra+ (14)
OSldl eCtrMax = OSldleCtr; (15)
0SSt at Rdy = TRUE; (16)
forT(;i() {d
asK code,
\ 4 T for (;;) { o
} ) Compute Statistics; (17)

Figure 34, Statistic task initialization

TaskSt art () isresponsiblefor initializing and starting theticker F3-4(5). Thisisnecessary becausewedon’t want
to receive atick interrupt until we areactually multitasking. Next, TaskStart () calsOSStat I nit () F3-4(6).
OSSt at | nit () determines how high the idle counter (OSI dl eCt r) can count up to if no other task in the

application is executing. A Pentiumt | running at 333 MHz increments this counter to a value of 15,000,000 or so.
OSI dl eCtr isstill far from wrapping around the 4,294,967,296 limit of a 32-bit value. As processors get faster, you

may want to keep an eye on this potential problem.

OSSt at | ni t () startsoff by callingOSTi meDl y() F3-4(7) which will put TaskSt art () tosleep for two ticks.
Thisisdoneto synchronizeOSSt at | ni t () totheticker. u C/OS-11 will then picksthe next highest priority task that
is ready to run, which happens to be OSTaskSt at (). We will see the code for OSTaskSt at () later but, asa

preview, the very first thing OSTask St at () doesis check to seeif the flagOSSt at Rdy is set to FALSE F3-4(8)



and delays for 2 seconds if it is. It so happens that OSSt at Rdy isinitialized to FALSE by OSI ni t () and thus,
OSTaskSt at () will infact put itself to sleep for 2 seconds F3-4(9). This causes a context switch to the only task
that is ready to run, OSTaskl dl e(). The CPU stays in OSTaskl dl e() F3-4(10) until the two ticks of
TaskStart () expire. After two ticks, TaskSt art () resumes F3-4(11) executionin OSStat I ni t () and

OSl dl eCtr iscleared F3-4(12). Then, OSSt at I ni t () delaysitself for one full second F3-4(13). Because no
other task isready to run, OSTaskl dl e() will again get control of the CPU. During that time, OSI dl eCt r will be
continuously incremented F3-4(14). After onesecond, TaskSt art () isresumed, still inOSSt at | ni t () and, the
value that OSI dl eCt r reached during that one second is saved in OSI dl eCt r Max F3-4(15). OSStat I nit ()
setsOSSt at Rdy to TRUE F3-4(16) which will allow OSTaskSt at () toperform CPU usage computation F3-4(17)
after itsdelay of 2 seconds expires.

The actual codefor OSSt at | ni t () isshown below.

void OSStatlnit (void)

{
OSTi meDl y( 2);
OS_ENTER_CRI Tl CAL() ;
oSl dl eCtr = OL;
OS_EXIT_CRI Tl CAL() ;
OSTi meDl y( OS_TI CKS_PER_SEC) ;
OS_ENTER_CRI Tl CAL() ;
OSldl eCtrMax = OSldl eCtr;
OSSt at Rdy = TRUE;
OS_EXI T_CRI Tl CAL() ;

}

Listing 3.12, Initializing the satistic task.

The codefor OSTaskSt at () isshowninlisting 3.13. We aready discussed why we have to wait for OSSt at Rdy
in the previous paragraphs L3.13(1). Thetask code executes every second and basically determines how much CPU
timeis actually consumed by all the application tasks. When you start adding application code, the idle task will get
less of the processor'stime and thus, OSI dl eCt r will not be allowed to count as high asit did when nothing else was

running. Remember that we save this maximum valuein OSI dl eCt r Max . CPU utilization is stored in the variable
OSCPUUs age and iscomputed L 3.13(2) asfollows:

OSdleCtr 0

OSCPUUsage,, =100 8- ————__2
@ OSdeCtrMax g
Once the above computation is performed, OSTask St at () callsOSTaskSt at Hook() L3.13(3) whichisauser

definable function that allows for the statistic task to be expanded. Indeed, your application could compute and
display the total execution time of all the tasks, what percentage of timeis actually consumed by each task, and more

(see Example#3).

voi d OSTaskStat (void *pdata)
{

I NT32U run;

I NT8S usage;

pdata = pdat a;

whi |l e (OSStat Rdy == FALSE) ({ (1)
OSTi meDl y(2 * OS_TI CKS_PER_SEC) ;

}




for

&; )EN'{I'ER_CRI TI CAL() ;

OSldleCtrRun = OSldl eCtr;
run = OSldl eCtr;
oSl dl eCtr = 0L;

OS_EXIT_CRI Tl CAL() ;
if (OsSldleCrMax > 0OL) {
usage = (INT8S)(100L - 100L * run / OSldl eCtrMx);
if (usage > 100) {
OSCPUUsage = 100;
} else if (usage < 0) {
OSCPUUsage = O;
} else {
OSCPUUsage = usage;
}

} else {
OSCPUUsage = O0;

}
OSTaskSt at Hook() ;
OSTi meDl y(OS_TI CKS_PER_SEC) ;

(2)

(3)

Listing 3.13, Satistics Task.

3.09 Interrupts under u C/OSH |

MC/OSH| requires that an Interrupt Service Routine (ISR) be written in assembly language.

If your C compiler

supportsin-line assembly language, however, you can put the ISR code directly in a C source file. The pseudo code
for an ISR is shown below:




Your | SR

Save all CPU registers; (1)
Call OSlIntEnter() or, increnment OSIntNesting directly; (2)
Execute user code to service |SR; (3)
Call OSIntExit(); (4)
Restore all CPU registers; (5)
Execute a return frominterrupt instruction; (6)

Listing 3.14, ISRsunder u C/OSH .

Y our code should save all CPU registers onto the current task stack L3.14(1). Note that on some processors like the
Motorola 68020 (and higher), however, adifferent stack is used when servicing aninterrupt. p C/OS-I1 can work with
such processors as long as the registers are saved on the interrupted task’s stack when a context switch occurs.

M C/OSH| needs to know that you are servicing an ISR and thus, you need to either call OSI nt Enter () or,
increment the global variable OSI nt Nesti ng L3.14(2). OSI nt Nest i ng can be incremented directly if your
processor performs an increment operation to memory using asingleinstruction. If your processor forces you to read
OSI nt Nest i ng in aregister, increment the register and then store the result back in OSI nt Nest i ng then you
should call OSI nt Ent er () . OSI nt Ent er () wrapsthese threeinstructions with code to disable and then enable
interrupts thus ensuring access to OSI nt Nesti ng which is considered a shared resource. Incrementing
OSI nt Nest i ng directly is much faster than calling OSI nt Ent er () andisthusthe preferred way. One word of
caution, some implementation of OSI nt Ent er () will cause interrupts to be enabled when GCSI nt Ent er ()
returns. Inthese cases, you will need to clear the interrupt source before callingOSI nt Ent er () because otherwise,
your interrupt will be re-entered continuously and your application will crash!

Once the previous two steps have been accomplished, you can start servicing the interrupting device L3.14(3). This

section is obviously application specific. u C/OS1 allows you to nest interrupts because it keeps track of nesting in
OSI nt Nest i ng. In most cases, however, you will need to clear the interrupt source before you enable interrupts to

allow for interrupt nesting.

The conclusion of the ISR is marked by calling OSI nt Exi t () L3.14(4) which decrements the interrupt nesting
counter. When the nesting counter reaches 0, all nested interrupts have completed and p C/OS-II needs to determine
whether a higher priority task has been awakened by the ISR (or any other nested ISR). If a higher priority task is
ready to run, p C/OS-1 will return to the higher priority task rather than to the interrupted task. If the interrupted task
is still the most important task to run the GSI nt Exi t () will return to its caller L3.14(5). At that point the saved
registersarerestored and areturn frominterrupt instruction isexecuted L 3.14(6). Notethat p C/OS-1 will return to the
interrupted task if scheduling has been disabled (OSLockNest i ng > 0).

The above description isfurther illustrated in figure 3-5. Theinterrupt is received F3-5(1) but is not recognized by the
CPU either because interrupts have been disabled by p C/OS-11 or your application or, the CPU has not completed
executing the current instruction. Once the CPU recogni zes the interrupt F3-5(2), the CPU vectors (at least on most
microprocessors) to the ISR F3-5(3). As described above, the ISR saves the CPU registers F3-5(4) (i.e. the CPU’s
context). Once this is done, your ISR notifies p C/OS-Il by calling OSI nt Enter () or by incrementing
CSI nt Nest i ng F3-5(5). Your ISR codethen getsto execute F3-5(6). Y our | SR should do aslittle work as possible
and defer most of the work to thetask. A task isnotified of the ISR by calling either OSMboxPost () , OSQPost ()
or OSSenPost () . Thereceiving task may or may not be pending at the mailbox, queue or semaphore when the ISR
occurs and the post is made. Once the user ISR code has completed, your need to call OSI nt Exi t () F3-5(7). As
can be seen from the timing diagram, OSI nt Exi t () takeslesstimeto return to the interrupted task when there is no
higher priority task (HPT) readied by the ISR. Furthermore, in this case, the CPU registers are then simply restored
F3-5(8) and areturn from interrupt instruction is executed F3-5(9). If the ISR made a higher priority task ready to run
then OSI nt Exi t () will take longer to execute since a context switch is now needed F3-5(10). The registers of the
new task will be restored F3-5(11) and areturn from interrupt instruction will be executed F3-5(12).
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Figure 3-5, Servicing an interrupt

The code for OSI nt Ent er () is shown in listing 3.15 and the code for OSI nt Exi t () isshown in listing 3.16.
Very little needs to be said about OSI nt Ent er () .



voi d OSIntEnter (void)

{
OS_ENTER _CRI Tl CAL();
OSI nt Nest i ng++;
OS EXIT_CRITI CAL() ;
}

Listing 3.15, Notify uC/OS-11 about beginning of | SR.

void OSIntExit (void)

{
OS_ENTER_CRI TI CAL() ; (1)
if ((--OSIntNesting | OSLockNesting) == 0) { (2)
OSIntExitY = OSUnMapThbl [ OSRdy G p] ; (3)
OSPri oHi ghRdy = (INT8U) ((OSIntExitY << 3) +
OSUnMapTbl [ OSRAy Thl [ OSI nt Exi t Y] ]) ;
if (OSPrioH ghRdy != OSPrioCur) {
OSTCBHi ghRdy = OSTCBPri oTbl [ OSPri oHi ghRdy] ;
OSCt xSWCt 1 ++;
OSI nt Ct XSW() ; (4)
}
}
OS_EXI T_CRITI CAL() ;
}

Listing 3.16, Notify u C/OS-11 about leaving an ISR.

OSI nt Exi t () looksstrangely likeOSSched() except for three differences. First the interrupt nesting counter is
decremented in OSI nt Exi t () L3.16(2) and rescheduling occurs when both the interrupt nesting counter and the
lock nesting counter (OSLockNest i ng) are both 0. The second difference is that the Y index needed for
OSRdyThl [ ] is stored in the global variable OSI nt Exi t Y L3.16(3) This is done to avoid allocating a local

variable on the stack which, would need to be accounted for in OSI nt Ct xSw() (see Section 9.04.03,
0OS CPU_A.ASM, OSIntCtxSw()). Finally, If a context switch is needed, OSI nt Exi t () calls OSI nt Ct xSw()

L3.16(4) instead of OS_TASK_SW() asitdidinOSSched().

There aretwo reasonsfor calling OSI nt Ct xSw() instead of OS_TASK_SW ). First, half the work is already done

because the | SR has already saved the CPU registers onto the task stack as shown in L3.14(1) and F3-6(1). Second,
caling OSI nt Exi t () from the ISR pushes the return address of the ISR onto the stack L3.14(4) and F3-6(2).
Depending on how interrupts are disabled (see Chapter 9, Porting pL C/OS-11), the processor’s status word may be
pushed onto the stack L3.16(1) and F3-6(3) by OS_ENTER _CRI Tl CAL() inOSI nt Exi t () . Finaly, the return
address of the call to OSI nt Ct x Sw( ) isalso pushed onto the stack L3.16(4) and F3-6(4). The stack frame looks like

what L C/OS-11 expects when a task is suspended except for the extra elements on the stack F3-6(2), F3-6(3) and
F3-6(4). OSI nt Ct xSwW() simply needs to adjust the processor’s stack pointer asshownin F3-6(5). In other words,

adjusting the stack frame ensures that all the stack frames of the suspended tasks |ook the same.

Implementation details about OSI nt Ct xSw( ) are provided in chapter 9, Porting p C/OS-II.
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Figure 3-6, Cleanup by OSIntCtxSw().

Some processors like the Motorola 68HC11 require that you implicitly re-enable interrupts in order to allow for
nesting. This can be used to your advantage. Indeed, if your ISR needs to be serviced quickly and the ISR doesn’t
needto notify atask about thel SR then, youdon’t need to callOSI nt Ent er () (or incrementOSI nt Nest i ng) nor
OSI nt Exi t () aslongasyoudon’t enable interrupts within the ISR. The pseudo-code below shows this situation.
The only way atask and this ISR can communicate is through global variables.

M68HC11 | SR: /* Fast | SR, MUST NOT enable interrupts */
Al'l register saved automatically by |SR;
Execut e user code to service |SR;
Execute a return frominterrupt instruction;

Listing 3.17, ISRson a Motorola 68HC11.




3.10 Clock Tick

L C/OSH 1 requires that you provide a periodic time source to keep track of time delays and timeouts. A tick should

occur between 10 and 100 times per second, or Hertz. The faster the tick rate, the higher the overhead imposed on the
system. The actual frequency of the clock tick depends on the desired tick resolution of your application. You can

obtain atick source by either dedicating a hardware timer, or generating an interrupt from an AC power line (50/60 Hz)
signal.

You MUST enableticker interrupts AFTER multitasking has started, i.e. after callingOSSt ar t () . In other words,
you should initialize and tick interrupts in the first task that executes following acall to OSStart (). A common

mistakeisto enableticker interrupts between callingOSl ni t () and OSSt art () asshowninlisting 3.18.

voi d mai n(voi d)

{
bSInit(); [* Initialize pCl OS-11 */
)* Application initialization code ... */
/* ... Create at |least on task by calling OSTaskCreate() */
iEnabIe TICKER i nterrupts; /* DO NOT DO TH S HERE!!! */
bSStart(); /* Start nultitasking */
}

Listing 3.18, Incorrect way to start the ticker.

What could happen (and it has happened) is that the tick interrupt could be serviced before p C/OS-I1 starts the first
task. At thispoint, uC/OSII isin an unknown state and will cause your application to crash.

HCTOSHI's clock tick is serviced by calling OSTi meTi ck() from atick ISR Thetick ISR follows al the rules
described inthe previoussection. The pseudo codefor thetick ISRisshowninlisting 3.19. Thiscodemust bewritten
in assembly language because you cannot access CPU registers directly from C.




voi d OSTi ckl SR(voi d)
{

Save processor registers;
Call OSIntEnter() or increment OSIntNesting;

Cal | OSTi nmeTi ck();
Call OSIntExit();

Rest ore processor registers;
Execute a return frominterrupt instruction;

Listing 3.19, Pseudo codefor Tick ISR.

The codefor OSTi neTi ck() isshowninlisting 3.20. OSTi meTi ck() startsby calling a user definable function
(OSTi meTi ckHook () ) which can be used to extend the functionality of OSTi neTi ck() L3.20(1). | decided to
cal OSTi meTi ckHook() first to give your application a chance to do something as soon as the tick is serviced
because you may have some time critical work to do. Most of the work done by OSTi neTi ck( ) basically consist of
decrementing the CSTCBDI y field for each OS_TCB (if it's nonzero). OSTi meTi ck() follows the chain of
OS_TCBstarting at OSTCBLI st L3.20(2) until it reaches the idle task L3.20(3). When the OSTCBDI y field of a
task's OS_TCB is decremented to zero, the task is made ready torun L3.20(4). Thetask is not readied, however, if it
was explicitly suspended by OSTaskSuspend() L3.20(5). The execution time of OSTi neTi ck() isdirectly
proportional to the number of tasks created in an application.




voi d OSTi meTi ck (voi d)

{
OS_TCB *ptcb;
OSTi meTi ckHook () ; (1)
ptcb = OSTCBLI st ; (2)
whil e (ptcb->0STCBPrio != OS IDLE PRI O { (3)
OS_ENTER_CRI Tl CAL() ;
if (ptcb->0STCBDy != 0) {
if (--ptcb->0STCBDly == 0) {
if (!(ptcb->0OSTCBStat & OS _STAT_SUSPEND)) ({ (5)
OSRAy G p | = pt cb- >OSTCBBI t Y; (4)
OSRdy Tbl [ pt cb->0STCBY] | = pt cb- >OSTCBBI t X;
} else {
ptch->0STCBD 'y = 1;
}
}
}
ptcb = ptcb->0OSTCBNext ;
OS_EXIT_CRI Tl CAL();
}
OS_ENTER_CRI Tl CAL() ; (7)
OSTi me++; (6)
OS_EXI T_CRITI CAL() ;
}

Listing 3.20, Code to service a tick.

OSTi meTi ck() aso accumulates the number of clock ticks since power up in an unsigned 32-bit variable called
OSTi me L3.20(6). Notethat | disable interrupts L3.20(7) before incrementing OSTi me because on some processors,
a32-hit increment will most likely be done using multiple instructions.

If you don't like to make | SRs any longer than they must be, OSTi meTi ck() can becalled at thetask level as shown

inlisting 3.21. To do this, you would create atask which has ahigher priority than all your application tasks. Thetick
ISR would need to signal this high priority task by using either a semaphore or a message mailbox.

voi d TickTask (void *pdata)

pdata = pdat a;

for (5;) {
OSMooxPend(. . .); /* Wait for signal fromTick ISR */
OSTi meTi ck() ;

}

Listing 3.21, Codeto service a tick.

Y ou would obviously need to create amailbox (initialized to NULL) which would signal the task that atick interrupt
occurred. Thetick ISR would now look as shownin listing 3.22.

voi d OSTi ckl SR(voi d)
{

Save processor registers;




Call OSIntEnter() or increnent OSIntNesting;
Post a ‘dumrmy’ nessage (e.g. (void *)1) to the tick mail box;

Call OSIntExit();
Rest ore processor registers;
Execute a return frominterrupt instruction;

Listing 3.22, Code to service a tick.

3.11 p /oSl Initialization

A requirement of p C/OSII is that you call OSInit () before you call any of its other services. OSI ni t ()
initidizes al of p C/OS-1I's variables and data structures (see OS_CORE. Q.

OSl ni t () createstheidletask (OSTaskl dl e() ) whichisalwaysready-to-run. The priority of OSTaskl dl e()
isalwayssd toOS_LONEST_PRI O. If OS_TASK_STAT_ENandOS_TASK_CREATE_EXT_EN(see OS_CFG. H
areboth setto 1, OSI ni t () also createsthe statistic task, OSTask St at () and makes it ready-to-run. The priority
of OSTaskSt at () isalwayssettoOS_LONEST_PRI O — 1.

Figure 3-7 shows the relationship between some of p C/OS-11's variables and data structures after calling OSI ni t ().
Theillustration assumes that:

1. OS_TASK STAT ENissettolinOS_CFG H
2. OS_LOWNEST_PRI Oissetto63in0S_CFG H
3. OS_MAX_TASKSissettoavalue higher that 2inOS_CFG H

The Task Control Blocks (OS_TCBs) of these two tasks are chained together in a doubly-linked list. OSTCBLi st
points to the beginning of this chain. When atask is created, it is always placed at the beginning of thelist. In other
words, OSTCBLi st always pointsto theOS_TCB of last task created. The ends of the chain point to NULL (i.e. 0).

Because both tasks are ready-to-run, their corresponding bit in OSRdy Tbl [ ] are set to 1. Also, because the bit of
both tasks are on thesame row inOSRdy Tbl [ ] , only one bit inOSRdy Gr p issetto 1.
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Figure 3-7, Data structures after calling OSInit()

p C/OSH | asoinitializesfour poolsof free datastructuresasshowninfigure 3-8. Each of these poolsaresingly linked
lists and alows p C/OS1 to quickly obtain and return an element from and to a pool. Note that the number of free
OS_TCBs in the free pool is determined by OS_MAX_TASKS specified in OS_CFG. H. pC/OS-I1 automatically
allocatesOS_N_SYS_TASKS (seeuCOS_I | . H)OS_TCB entries automatically. Thisof course allows for sufficient
task control blocks for the statistic task and the idle task. The lists pointed to by OSEvent FreeLi st and
OSQFr eelLi st will bediscussed in Chapter 6, Intertask Communication & Synchronization. Thelist pointed to by

OSMentr eeLi st will bediscussed in Chapter 7, Memory Management.
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Figure 3-8, Free Pools




3.12 Starting u C/OS |

Y ou start multitasking by callingOSSt ar t () . Beforeyou start p C/OS-11, however, you MUST create at | east one of
your application tasks as shown in listing 3.23.

void main (void)

{
CSlnit(); /[* Initialize uC/OS-11 */
Create at | east 1 task using either OSTaskCreate() or OSTaskCreat eExt();
OSstart(); [* Start multitasking! OSStart() will not return */
}

Ligting 3.23, Initializing and Starting u C/OS-II.

The code for OSSt art () isshown in listing 3.24. When called, OSSt art () findsthe OS_TCB of the highest
priority task that you have created (done through the ready list) L3.24(1). Then, OSStart () cdls
OSSt art Hi ghRdy() L3.24(2) (see OS_CPU_A. ASM for the processor being used. Basically,
OSSt art Hi ghRdy() restores the CPU registers by popping them off the task’s stack and then, executes a return
from interrupt instruction which forces the CPU to execute your task’s code (see Section 9.04.01, OS_ CPU_A.ASM,
OSSartHighRdy() for details on how thisis done for the 80x86). Y ou should note that OSSt ar t H ghRdy () will
never returnto OSSt art () .

void OSStart (void)

{
I NT8U vy;
| NT8U Xx;
i f (OSRunning == FALSE) {
y = OSUnMapTbl [ OSRdyGr p] ;
X = OSUnMapTbl [ OSRdyThbl [y] ];
OSPri oHi ghRdy = (INT8U) ((y << 3) + X);
OSPr i oCur = OSPri oH ghRdy;
OSTCBHi ghRdy = OSTCBPri oThl [ OSPri oHi ghRdy] ; (1)
OSTCBCur = OSTCBHi ghRdy;
OSSt art Hi ghRdy() ; (2)
}
}

Listing 3.24, Starting multitasking.

Figure 39 shows the contents of the variables and data structures after multitasking has started. Here | assumed that
the task you created has a priority of 6. You will notice that OSTaskCt r indicates that three tasks have been created,
OSRunni ngisset toTRUE indicating that multitasking has started, OSPr i oCur andCOSPr i oHi ghRdy contain the
priority of your application task and, OSTCBCur and OSTCBHi ghRdy both point to the OS_TCB of your task.
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Figure 3-9, Variables and Data Structures after calling OSStart()

3.13 Obtaining uC/OS-11’ sversion

Y ou can obtain the current version of p C/OS-II from your application by callingOSVer si on(). OSVer si on()

returns the version number multiplied by 100. In other words, version 1.00 would be retumed as 100.

I NT1L6U OSVersi on (voi d)

{

return (OS_VERSI ON);

}

Ligting 3.25, Getting 4 C/OS | I's version.




Tofind out about the latest version of p C/OS-11 and how to obtain an upgrade, you should either contact the publisher
or check the official u C/OS|1 WEB site at www.UCOS-||.com

3.14 OSEvent???() functions

Y ou probably noticed that OS_CORE. C has four functions that were not mentioned in this chapter. These functions
are OSEventWaitListlnit(), OSEvent TaskRdy(), OSEvent TaskWait()and OSEvent TQ(). |
placed these functions in OS_CORE. C but | will explain their use in Chapter 6, Intertask Communication &
Synchronization.



Chapter 4

Task Management

We saw in the previous chapter that atask is either an infinite loop function or afunction that deletesitself wheniitis

done executing. Note that the task code is not actually deleted, p C/OS-11 simply doesn’t know about the task anymore
and thusthat codewill not run. A task look just like any other C function containing areturn type and an argument but,
it must never return. The return type of atask must always be declared to bevoi d. The functions described in this

chapter are found in the fileOS_TASK. C. Toreview, atask must ook as shown below.

voi d Your Task (void *pdat a)

for (55) {
/* USER CODE */
Call one of uCGCs-I1's services:
OGSvhoxPend() ;
GsQPend() ;
GsSenPend() ;
OSTaskDel (CS_PRI O SELF) ;
OSTaskSuspend(OS_PRI O SELF);
CSTi meDl y() ;
OSTi meDl yHVBM ) ;
/* USER CCDE */




voi d Your Task (void *pdat a)

/* USER CODE */
OSTaskDel (OS_PRI O SELF);
}

This chapter describes the services that allow your application to create atask, delete atask, change atask’s priority,
suspend and resume atask and, allow your application to obtain information about atask.

M C/OS-1 can manage up to 64 tasks although 1 C/OS 1 reserves the four highest priority tasks and the four lowest
priority tasksfor itsown use. Thisleavesyou with up to 56 application tasks. The lower the value of the priority, the
higher the priority of the task. In the current version of p C/OS 11, the task priority number also serves as the task
identifier.

4.00 Creating a Task, OSTaskCreate()

In order for p C/OS- | to manage your task, you must ‘create’ atask. Y ou create atask by passing its address along

with other argumentsto one of two functions: OSTaskCr eat e() or OSTaskCr eat eExt (). OSTaskCr eat e()
is backward compatible with u C/OSwhile OSTaskCr eat eExt () isan ‘extended’ version of OSTaskCr eat e( )
and provides additional features. A task can either be created using either function. A task can be created prior to the

start of multitasking or by another task. You MUST create at |east one task before you start multitasking (i.e. before
youcall OSSt art () ). A task cannot be created by an ISR.

The code for OSTaskCr eat e() is shown in listing 4.1. As can be seen, OSTaskCr eat e() requires four
arguments. t ask isapointer to the task code, pdat a is a pointer to an argument that will be passed to your task
when it starts executing, pt os isapointer to the top of the stack that will be assigned to the task (see section 4.02,
Task Stacks) and finally, pri o isthe desired task priority.

I NTBU OSTaskCreate (void (*task)(void *pd), void *pdata, OS5 STK *ptos, |NT8U pri o)
{

voi d *psp;
| NT8U err;
if (prio > OS5 LONEST PRIO { (1)
return (GS PRIO I NVALID);
}
0S_ENTER CRI Tl CAL() ;
if (OSTCBPrioThbl[prio] == (G5 TCB *)0) { (2)
OSTCBPri oThl [prio] = (OS_TCB *)1; (3)
CS_ EXIT_CRITICAL() ; (4)
psp = (void *)COSTaskStklnit(task, pdata, ptos, 0); (5)
err = OSTCBInit(prio, psp, (void *)0, 0, 0, (void *)0, 0); (6)
if (err == OS_NO ERR) { (7)
08 _ENTER CRI Tl CAL() ;
OSTaskCtr ++; (8)
OSTaskCr eat eHook( OSTCBPri oThl [pri o] ) ; (9)
0S8 _EXI T_CRI Tl CAL() ;
i f (OSRunning) { (10)
0sSched() ; (11)
} else {
OSTCBPri oThl [prio] = (OS TCB *)0; (12)

return (err);
} else {
OS_EXIT_CRITI CAL();




return (OGS PRI O EXI ST) ;

Ligting 4.1, OSTaskCreate()

OSTaskCr eat e() starts by checking that the task priority isvalid L4.1(1). The priority of atask must be a number
between 0 and OS_LOWEST_PRI O, inclusively. Next, OSTaskCr eat e() makes sure that atask has not already
been created at the desired priority L4.1(2). With p C/OS-11, al tasks must have a unique priority. If the desired
priority isfreethen p C/OS-I1 *reserves' the priority by placing anon-NULL pointer in OSTCBPri oThl [] L4.1(3).
ThisalowsOSTaskCr eat e() tore-enableinterrupts L4.1(4) whileit sets up the rest of the data structures for the
task.

OSTaskCr eat e() then callsOSTaskSt kI ni t () L4.1(5) which isresponsible for setting up the task stack. This
function is processor specificand isfound in OS_CPU_C. C. Refer to Chapter 8, Porting u C/OS-1 | for detailson how
toimplementOSTaskSt ki ni t () . If youalready haveaport of u C/OS11 for the processor you areintending to use
then, you don’t need to be concerned about implementation details. OSTaskSt klnit () returns the new
top-of-stack (psp) which will be saved in thetask’s OS_TCB. Y ou should note that the fourth argument (i.e. opt ) to
OSTaskSt kl nit () issetto 0. Thisis because, unlike OSTaskCr eat eExt (), OSTaskCr eat e() does not
support options and thus, there are no optionsto passto OSTask St kl ni t ().

M C/OSH | supports processors that have stacks that grow from either high memory to low memory or from low
memory to high memory. When you call OSTaskCr eat e( ), you must know how the stack grows (see OS_CPU. H

(OS_STACK_GROWTIH) of the processor you are using) because you must pass the task’s top-of-stack to
OSTaskCr eat e() which can either be the lowest memory location of the stack or the highest memory location of
the stack.

Once OSTaskSt kI ni t () hascompleted setting up the stack, OSTaskCr eat e() callsOSTCBI ni t () L4.1(6)
to obtain and initialize an OS_TCB from the pool of free OS_TCBs. The code for OSTCBI ni t () isshowninlisting
4.2 but isfound in OS_CORE. Cinstead of OS_TASK. C. OSTCBI ni t () firsttriesto obtainan OS_TCB from the
OS_TCBpool L4.2(1). If the pool contained afreeOS_TCB L4.2(2) then theOS_TCB isinitialized L4.2(3). Note
that once an OS_TCB isalocated, we can re-enabl e interrupts because, at this point, the creator of the task ‘owns’ the
OS_TCBand it cannot be corrupted by another concurrent task creation. We can thus proceed to initialize some of the
OS_TCBfields with interrupts enabled.

I NTBU OSTCBI nit (INT8U prio, OS_STK *ptos, OS_STK *pbos, |NT16U id,
I NT16U st k_si ze, void *pext, I NT16U opt)
{

OS_TCB *pt chb;

OS5 _ENTER CRI Tl CAL() ;
ptcb = OSTCBFreeli st ; (1)
if (ptcb != (0s8_TCB *)0) { (2)
OSTCBFr eeli st = pt ch- >OSTCBNext ;
OS EXIT CRITI CAL();

pt cb- >CSTCBSt kPt r = ptos; (3)
pt cb- >OSTCBPri o = (INT8U) pri o;
pt cb- >CSTCBS! at = OS_STAT_RDY;
pt cb- >OSTCBD y = 0;
#if OS TASK CREATE EXT _EN
pt cb- >OCSTCBEXt Pt r = pext;
pt cb- >OSTCBSt kSi ze = stk size;
pt cb- >OSTCBSt kBot t om = pbos;
pt cb- >CSTCBOpt = opt;
pt cb- >OSTCBI d =id;

#el se




pext = pext;
stk_si ze = stk_size;
pbos = pbos;
opt = opt;
id =id;
#endi f
#i f OS_TASK_DEL_EN
pt cb- >OSTCBDel Req = OS_NO ERR
#endi f
pt cb- >CSTCBY = prio >> 3;
pt cb- >OSTCBBI t Y = OSMapThbl [ pt cb- >OSTCBY] ;
pt cb- >OSTCBX = prio & 0x07;
pt cb- >OSTCBBI t X = CSMapTbl [ pt cbh- >0STCBX] ;
#if OS5 MBOX_EN || (OS_QEN & (OS_MAX QS >= 2)) || OS_SEMEN
pt cb- >CSTCBEvent Ptr = (OS_EVENT *)O0;
#endi f
#i f OS_ MBOX_EN || (OS5 _QEN & (OS5 _MAX_QS >= 2))
pt cb- >OSTCBMsg = (void *)O0;
#endi f
OS_ENTER CRI Tl CAL(); (4)
OSTCBPri oThbl [ pri 0] = ptcb; (5)
pt cb- >OCSTCBNext = OSTCBLI st ;
pt cb- >OSTCBPr ev = (OS_TCB *)0;
if (OSTCBList != (CS TCB *)0) {
OSTCBLI st - >OSTCBPrev = ptch;
}
OSTCBLI st = ptch;
CSRdy G p | = ptcb->0OSTCBBi t Y; (6)
OSRdyThl [ pt cb- >OSTCBY] | = pt cb- >OSTCBBI t X;
OS_EXI T_CRI Tl CAL() ;
return (G5 NO ERR); (7)
} else {
OS_EXI T_CRI Tl CAL() ;
return (OGS NO MORE TCB);
}
}

Listing 4.2, OSTCBInit()

We disable interrupts L4.2(4) when we need to insert the OS_TCB into the doubly linked list of tasks that have been
created L4.2(5). Thelist startsat OSTCBLi st and theOS_TCB of anew task is alwaysinserted at the beginning of
thelist. Finaly, thetask is made ready to run L4.2(6) and OSTCBI ni t () returnstoitscaller (OSTaskCr eat e())
with a code indicating that an OS_TCB has been allocated and initialized L4.2(7).

We can now continue the discussion of OSTaskCr eat e() (seelisting 4.1) Upon return from OSTCBI ni t (),
OSTaskCr eat e() checksthereturn code L4.1(7) and upon success, increments the counter of the number of tasks
created, OSTaskCtr L4.1(8). If OSTCBI nit () failed, the priority level is relinquished by setting the entry in
OSTCBPri oTbl [ pri o] to0L4.1(12). OSTaskCr eat e() thencallsOSTaskCr eat eHook() L4.1(9) which
is a user specified function that allows you to extend the functionality of OSTaskCr eat e(). For example, you
couldinitialize and store the contents of floating-point registers, MM U registersor anything el sethat can be associated
with atask. You would, however, typicaly store this additional information in memory that would be alocated by
your application. OSTaskCr eat eHook () can be declared either inOS_CPU_C. C(if OS_CPU_HOOKS_EN is set

to 1) or elsewhere. Note that interrupts are disabled when OSTaskCr eat e() cals OSTaskCr eat eHook().
Because of this, you should keep the code in this function to a minimum because it can directly impact interrupt




latency. When called, OSTaskCr eat eHook () receives a pointer to theOS_TCB of the task being created. This
means that the hook function can access all members of theOS_TCB data structure.

Finally, if OSTaskCr eat e() wascalled from atask (i.e. OSRunni ng is set to TRUE L4.1(10)) then the scheduler

iscalled L4.1(11) to determinewhether the created task hasahigherpriority thanitscreator. Creating ahigher priority
task will result in a context switch to the new task. If the task was created before multitasking has started (i.e. you did
not call OSSt art () yet) then the scheduler is not called.

4.01 Creating a Task, OSTaskCreateExt()

Creating atask using OSTaskCr eat eExt () offersyou moreflexibility but, at the expense of additional overhead.
The codefor OSTaskCr eat eExt () isshowninlisting 4.3.

As can be seen, OSTaskCr eat eExt () requires nine (9) arguments! The first four arguments (t ask, pdat a,

pt os andpr i o) are exactly the same aswithOSTaskCr eat e() and also, they arelocated in the same order. | did
that to make it easier to migrate your code to useOSTaskCr eat eExt ().

Thei d establishes auniqueidentifier for the task being created. This argument has been added for future expansion

and is otherwise unused by p C/OS-I1. Thisidentifier will allow me to extend pu C/OS- 11 beyond its limit of 64 tasks.
For now, simply set the task’s ID to the same value as the task’s priority.

pbos isapointer to the task’s bottomof-stack and this argument is used to perform stack checking.

st k_si ze specifiesthe size of the stack in number of elements. Thismeansthat if astack entry is4 byteswide then,
ast k_si ze of 1000 means that the stack will have 4000 bytes. Again, this argument is used for stack checking.

pext isapointer toauser supplied dataareathat can be used to extend theOS_TCB of thetask. For example, you can

add aname to atask (see Example #3), storage for the contents of floating-point registers during a context switch, port
addressto trigger an oscill oscope during a context switch and more.

Finaly,opt specifiesoptionsto OSTaskCr eat eExt () to specify whether stack checking isallowed, whether the
stack will be cleared, whether floating-point operations are performed by thetask, etc. uCOS_1 | . H containsalist of
available options (OS_TASK_OPT_STK_CHK, OS_TASK _OPT_STK_CLR, and OS_TASK_OPT_SAVE_FP).
Each option consists of a bit. The option is selected when the bit is set (you would simply OR the above
OS_TASK_OPT_??? constants).

| NT8U OSTaskCreat eExt (void (*task)(void *pd),
voi d *pdat a,
CS_STK  *pt os,
I NT8U prio,
I NT16U id,
OGS _STK  *pbos,
INT32U  stk_si ze,

voi d *pext ,
INT16U opt)
{
voi d *psp;
| NT8U err;
I NT16U i;
05 _STK *pfill;
if (prio > OS5 LOEST PRO { (1)

return (CS_PRI O I NVALID);

}
OS_ENTER CRI Tl CAL() ;




if (OSTCBPrioTbl[priol == (05 TCB *)0) { (2)

OSTCBPri oTbl [prio] = (OGS _TCB *) 1; (3)
OS_EXI T_CRITI CAL() ; (4)
if (opt & OS_TASK OPT_STK CHK) { (5)
if (opt & OS TASK OPT_STK CLR) {
pfill = pbos;
for (i =0; i < stk _size; i++) {

#if 0S_STK GROMH == 1
*pfill ++ = (08_STK)O;

#el se
*pfill -- = (OS_STK) 0;
#endi f
}
}
}
psp = (void *)COSTaskStklnit(task, pdata, ptos, opt); (6)
err = OSTCBInit(prio, psp, pbos, id, stk_size, pext, opt); (7)
if (err == OS_NO ERR) { (8)
OS_ENTER _CRI Tl CAL;
OSTaskCtr ++; (9)
OSTaskCr eat eHook( OSTCBPri oThl [ pri o] ) ; (10)
s EXIT_CRITI CAL() ;
i f (OSRunning) { (112)
O8Sched() ; (12)
} else {
OSTCBPri oTbl [prio] = (0S8 _TCB *) 0; (13)
return (err);
} else {

OS_EXI T_CRI Tl CAL() ;
return (GS PRI O EXI ST) ;

Listing 4.3, OST askCr eateExt()

OSTaskCr eat eExt () starts by checking that the task priority is valid L4.3(1). The priority of atask must be a
number between 0 and OS_LOWEST_PRI O, inclusively. Next, OSTaskCr eat eExt () makes surethat atask has

not already been created at the desired priority L4.3(2). With u C/OS-11, all tasks must have a unique priority. If the
desired priority is free then u C/OS-11 ‘reserves’ the priority by placing a non-NULL pointer in OSTCBPri oTbl [ ]

L4.3(3). Thisalows OSTaskCr eat eExt () to re-enable interrupts L4.3(4) while it sets up the rest of the data
structuresfor the task.

In order to perform stack checking (see section 4.03, Stack Checking) on a task, you must set the
OS_TASK_OPT_STK_CHK flag intheopt argument. Also, stack checking requiresthat the stack contain zeros(i.e.

it needsto be cleared) when the task is created. To specify that atask gets cleared wheniit is created, you would also
set OS_TASK_OPT_STK_CLRin the opt argument. When both of these flags are set, OSTaskCr eat eExt ()

clearsthe stack L4.3(5).

OSTaskCr eat eExt () thencallsOSTaskSt ki ni t () L4.3(6) which isresponsible for setting up the task stack.
Thisfunctionis processor specific andisfound inOS_CPU_C. C. Refer to Chapter 8, Porting p C/OS-11 for details on
how to implement OSTask St kI ni t (). If you aready have aport of u C/OS 1 for the processor you are intending
to use then, you don’t need to be concerned about implementation details. OSTaskSt kil ni t () returnsthe new
top-of-stack (psp) which will be saved inthetask’s OS_TCB.




M C/OS- 1 supports processors that have stacks that grow from either high memory to low memory or from low
memory to high memory (see section 4.02, Task Stackg. When you call OSTaskCr eat eExt () , you must know

how the stack grows (seeOS_CPU. Hof the processor you are using) because you must pass the task’ s top-of-stack to
OSTaskCr eat eExt () which can either be the lowest memory location of the stack (when OS_STK_GROWIH is0)
or the highest memory location of the stack (when OS_STK_GROWH is 1).

Once OSTaskSt kI ni t () has completed setting up the stack, OSTaskCr eat eExt () calls OSTCBI nit ()

L4.3(7) to obtain and initialize anOS_TCB from the pool of freeOS_TCBs. The code for OSTCBI ni t () isshown
and described with OSTaskCreate() (see section 4.00) Upon return from OSTCBInit (),
OSTaskCr eat eExt () checksthereturn code L4.3(8) and upon success, increments the counter of the number of
tasks created, OSTaskCt r L4.3(9). If OSTCBI ni t () failed, the priority level isrelinquished by setting the entry in
OSTCBPri oTbl [ pri o] to 0L4.3(13). OSTaskCr eat eExt () then callsOSTaskCr eat eHook() L4.3(10)
which is a user specified function that allows you to extend the functionality of OSTaskCreat eExt ().
OSTaskCr eat eHook () can be declared either inOS_CPU_C. C(if OS_CPU_HOOKS_ENis set to 1) or elsewhere
(if OS_CPU_HOOKS_EN is set to 0). Note that interrupts are disabled when OSTaskCreat eExt () cals
OSTaskCr eat eHook () . Because of this, you should keep the code in this function to a minimum because it can
directly impact interrupt latency. When called, OSTaskCr eat eHook () receives a pointer to the OS_TCB of the
task being created. This meansthat the hook function can access all members of theOS_TCB data structure.

Finaly, if OSTaskCr eat eExt () was called from a task (i.e. OSRunni ng is set to TRUE L4.3(11)) then the

scheduler is called L4.3(12) to determine whether the created task has a higher priority than its creator. Creating a
higher priority task will result in a context switch to the new task. If the task was created before multitasking has
started (i.e. you did not call OSSt art () yet) then the scheduler is not called.

4.02 Task Stacks

Each task MUST have its own stack space. A stack MUST be declared as being of typeOS_STKand MUST consist

of contiguous memory locations Y ou can either allocate stack space ‘statically’ (i.e. compile-time) or ‘dynamically’
(run-time). A static stack declaration looks as shown below. Both of these declarations are made outside a function.

static OS5 STK M/TaskSt ack[ st ack_si ze] ;

Listing 4.4, Static Stack

or,

0S5 STK MTaskSt ack][ st ack_si ze] ;

Listing 4.5, Static Stack

You can alocate stack space dynamically by using the C compiler's mal | oc() function as shown in listing 4.6.

However, you must be careful with fragmentation. Specifically, if you create and delete tasks then, eventually, your
memory allocator may not be able to return a stack for your task(s) because the heap gets fragmented.

OS STK  *pstKk;

pstk = (O8_STK *)mal | oc(stack_si ze);

if (pstk !'= (O5_STK *)0) ({ /* Make sure malloc() had enough space */
Create the task;

}




Listing 4.6, Using ‘malloc()’ to allocate stack space for a task

Figure 4 1 illustrates a heap containing 3 Kbytes or available memory that can be allocated withmal | oc() F4-1(1).
For sake of discussion, you create 3 tasks (task A, B and C) each requiring 1K. We will also assume that the first 1

Kbytesis given to task A, the second to task B and the third to C F4-1(2). Y our application then deletestask A and
task B and, relinquishes the memory back to the heap using free() F-1(3). Your heap now has 2 Kbytes of

memory free but, it's not contiguous. This means that you could not create another task (i.e. task D) that required 2
Kbytes. Your heap is thus fragmented. If, however, you never delete a task then using mal | oc() is perfectly

acceptable.

A
1K) 1K
3K B B
(1K) (1K)
C
1K 1K
(1) (2) (3)

Figure 41, Fragmentation.

W C/OSH | supports processors that have stacks that grow from either high memory to low memory or from low
memory to high memory. When you call either OSTaskCr eat e() or OSTaskCr eat eExt () , you must know

how the stack grows because you need to pass the task’s top-of-stack to the task creation function. When
OS_STK_GROWIHisset to 0in OS_CPU. H, you need to pass the lowest memory location of the stack to the task

create function as showninlisting 4.7.



OS STK TaskSt ack[ TASK_STACK_SI ZF] ;

OSTaskCreat e(t ask, pdata, &TaskStack[O], prio);

Listing 4.7, Stack grows from LOW memory to HIGH memory

When OS_STK_GROWIHissetto 1in OS_CPU. H, you need to pass the highest memory location of the stack to the
task create function as shown in listing 4.8.

OS STK TaskSt ack[ TASK_STACK_SI ZE] ;

OSTaskCreat e(t ask, pdata, &TaskStack[ TASK STACK Sl ZE 1], prio);

Listing 4.8, Stack grows from HIGH memory to LOW memory

Thisreguirement affects code portability. If you need to port your code from a processor architecture that supportsa
downward growing stack to an upward growing stack then you may need to do like | did in OS_CORE. C for

OSTaskl dl e() and OSTaskSt at () . Specificaly, with the above example, your code would look as shown in
listing 4.9.

05 _STK TaskSt ack[ TASK_STACK Sl ZE] ;

#if 08 _STK GROMH == 0

OSTaskCr eat e(task, pdata, &TaskStack[O], prio);
#el se

CSTaskCreat e(t ask, pdata, &TaskStack[ TASK STACK S| ZE-1], prio);
#endi f

Listing 4.9, Supporting stacks which grow in either direction.

The size of the stack needed by your task is application specific. When sizing the stack, however, you must account
for nesting of al the functions called by your task, the number of local variablesthat will be allocated by all functions
called by your task and, the stack requirementsfor all nested interrupt serviceroutines. Inaddition, your stack must be
ableto store all CPU registers.

4.03 Stack Checking, OSTaskStkChk()

It is sometimes necessary to determine how much stack space a task actually uses. This allows you to reduce the
amount of RAM needed by your application code by not over allocating stack space. p C/OS-II provides afunction
caled OSTaskSt kChk() that providesyou with this valuable information.

Refer to figure 4-2 for the following discussion. Stack checking is performed on demand as opposed to continuously.
Note that figure 4-2 assumes that stack grows from high memory to low memory (i.e. OS_STK_GROWH isset to 1)
but, the discussion applies equally well to a stack growing in the opposite direction F4-2(1). p C/OS-11 determines
stack growth by looking at the contents of the stack itself. To perform stack checking, p C/OS-11 requiresthat the stack
get filled with zeros when the task is created F4-2(2). Also, pC/OS-1l needs to know the location of the
bottomof-stack (BOS) F4-2(3) and the size of the stack you assigned to the task F4-2(4). These two values are stored
inthetask’s OS_TCB when thetask is created.
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Figure 42, Stack checking

In order for you to use p C/OSHI's stack checking facilities, you MUST do the following:

1 SetOS_TASK CREATE_EXTto1inOS_CFG H
2 Create atask usingOSTaskCr eat eExt () and give the task much more space than you think it

really needs.
3 Set the opt agument in OSTaskCreateExt() to OS_TASK OPT_STK CHK +

OS_TASK_OPT_STK_CLR. Note that if your startup code clears all RAM and you never delete
tasks oncethey are created then, you don’t need to set theOS_TASK_OPT_STK_CLRoption. This
will reduce the execution time of OSTaskCr eat eExt () .

4. Cdl OSTaskSt kChk() by specifying the priority of the task you desire to check.

OSTaskSt kChk () computesthe amount of free stack space by ‘walking’ from the bottom of the stack and counting
the number of zero entries on the stack until a non-zero value is found F4-2(5). Note that stack entries are checked
using the data type of the stack (seeOS_STK inOS_CPU. H). In other words, if a stack entry is 32-bit wide then the
comparison for azero valueis done using 32 bits. The amount of stack space used F4-2(8) is obtained by subtracting
the number of zero value entries F4-2(6) from the stack size you specified in OSTaskCreat eExt ().
OSTaskSt kChk () actualy placesthe number of bytes free and the number of bytes used in a data structure of type
OS_STK_DATA (seeuCOS_I | . H). You should note that at any given time, the stack pointer for the task being
checked may be pointing somewhere between the initial Top-Of-Stack (TOS) and the deepest stack growth F4-2(7).
Also, every timeyou call OSTask St kChk() , you may get adifferent value for the amount of free space on the stack
until your task has reached its deepest growth F4-2(5).

Y ou will need to run the application long enough and under your worst case conditions to get proper numbers. Once
OSTask St kChk () providesyou witht heworst case stack requirement, you can go back and set thefinal size of your



stack. Y ou should accommodate for system expansion so make sure you allocate between 10 and 25% more. What
you should get from stack checking isa‘ballpark’ figure; you are not looking for an exact stack usage.

The code for OSTask St kChk( ) isshown in listing 4.10. The data structure OS_STK_DATA (see uCOS Il.H) is
used to hold information about the task stack. | decided to use a data structure for two reasons. First, | consider
OSTaskSt kChk () tobea‘query’ typefunctionand | wanted to haveall query functionswork the sameway— return

data about the query in adata structure. Second, passing datain a data structure is both efficient and allows me to add
additional fieldsin the futurewithout changing the API (Application Programming Interface) of OSTask St kChk( ) .

For now, OS_STK_DATA only contains two fields: OSFree and OSUsed. As you can see, you invoke
OSTaskSt kChk () by specifying the priority of the task you desire to perform stack checking on. If you specify
OS_PRI O_SELF L4.10(1) then it is assumed that you desire to know the stack information about the current task.
Obviously, the task must exist L4.10(2). To perform stack checking, you must have created the task using
OSTaskCr eat eExt () and you must have passed the option OS_TASK_OPT_STK_CHK L4.10(3). If al the
proper conditions are met, OSTask St kChk () computesthe free stack space as described above by ‘walking’ from
the bottom of stack until a non-zero stack entry is encountered L4.10(4). Finaly, the information to store in
OS_STK_DATA is computed L4.10(5). Note that the function computes the actual number of bytes free and the
number of bytes used on the stack as opposed to the number of elements. Obviously, the actual stack size (in bytes)
can be obtained by adding these two values.



I NTBU OSTaskSt kChk (I NT8U prio, OS_STK DATA *pdat a)
{

OS TCB *ptch;

OS_STK  *pchk;

INT32U free;
INT32U  si ze;
pdat a- >OSFree = 0;
pdat a- >OSUsed = 0;

if (prio > (B_LO/\’EST_PRI O && prio !'= OG5 PRIO SELF) {
return (GS PRIO I NVALID);

OS_ENTER_CRI Tl CAL() ;
if (prio == 08 PR O SELF) { (1)
pri o = OSTCBCur - >C8TCBPri o;

}

ptcb = OST@BPrioThbl [prio];

if (ptcb == (GS_TCB *)0) { (2)
S _EXIT_CRITI CAL();
return (OS5 _TASK NOT_EXI ST);

}

if ((ptch->0STCBOpt & OS_TASK OPT_STK CHK) == 0) { (3)
0S EXI T_CRITI CAL();
return (OS_TASK OPT_ERR);

}

free = 0; (4)
si ze = ptch- >CSTCBSt kSi ze;

pchk = pt cb- >OSTCBSt kBot t om

0OS EXI T _CRITI CAL();
#if OS_STK GRONTH ==
whi l e (*pchk++ == 0) {

free++;
}
#el se
while (*pchk-- == 0) {
free++;
}
#endi f
pdat a- >OSFree = free * sizeof (OS STK); (5)

pdat a- >OSUsed = (size - free) * sizeof (0S_STK);
return (OS_NO ERR);

Listing 4.10, Stack checking function

4.04 Deleting a Task, OSTaskDdl ()

It is sometimes necessary to delete atask. Deleting atask meansthat the task will be returned to the DORMANT state
(see Section 3.02, Task States) and does not mean that the code for the task will be deleted. The task codeis simply no
longer scheduled by 1 C/OS-I1. Y ou deleteatask by callingOSTaskDel () andthecodefor thisfunctionisshownin
listing 4.11. Here, we start by making sure that you are not attempting to delete the idle task because this is not
allowed L4.11(1). You are, however, allowed to delete the statistic task L4.11(2). OSTaskDel () then checksto
make sure you are not attempting to delete atask from within an ISR which is again not allowed L4.11(3). Thecaller
can deleteitself by specifying OS_PRI O_SELF asthe argument L4.11(4). We then verify that the task to delete does
in fact exist L4.11(5). This test will obviously pass if you specified OS_PRI O_SELF. | didn’'t want to create a

separate case for this situation because it would have increased code size and thus execution time.




Once al conditions are satisfied, the OS_TCB is removed from all the possible uC/OS-I data structures.
OSTaskDel () doesthisintwo partsto reduceinterrupt latency. First, if thetask isintheready list, it is removed
L4.11(6). Wethen check to seeif thetask isin alist waiting for a mailbox, a queue or a semaphore and if so, the task
isremoved from that list L4.11(7). Next, we force the delay count to zero to make sure that the tick ISR wi Il not ready
this task once we re-enable interrupts L4.11(8). Finally, we set the task’s . OSTCBSt at flag to OS_STAT_RDY.
Notethat weare not trying to make the task ready, we are simply preventing another task or an | SR from resuming this
task (i.e. incase the other task or ISR called OSTaskResune() L4.11(9)). Thissituation could occur because we
will bere-enabling interrupts L4.11(11) so, an ISR can make a higher priority task ready which could resume the task
we are trying to delete. Instead of setting the task’s . OSTCBSt at flag to OS_STAT_RDY, | could have simply
cleared the OS_STAT_SUSPEND bit (which would have been clearer) but, this takes slightly more processing time.

At this point, the task to delete cannot be made ready to run by another task or an I SR because, it’sbeen removed from
theready list, it's not waiting for an event to occur, it's not waiting for time to expire and cannot be resumed. In other
words the task is DORMANT for all intents and purposes. Because of this, | must prevent the scheduler L4.11(10)
from switching to another task because, if the current task is almost deleted then it would not be able to be reschedul ed!
At this point, we want to re-enable interruptsin order to reduce interrupt latency L4.11(11). We couldthusservicean
interrupt but because we incremented OSLockNest i ng the ISR would return to the interrupted task. Y ou should
note that we are still not done with the deletion process because we need to unlink the OS_TCB from the TCB chain

and returnthe OS_TCB to the freeOS_TCBlist.

Note also that | call a ‘dummy’ function @SDunmy () ) immediately after calling OS_EXI T_CRI Tl CAL()
L4.11(12). | do thisbecause | want to make sure that the processor will execute at least one instruction with interrupts
enabled. On many processors, executing an interrupt enable instruction forces the CPU to have interrupts disabled
until the end of the next instruction! The Intel 80x86 and Zilog Z-80 processors actually work like this. Enabling and
immediately disabling interrupts would behave just as if | didn’t enable interrupts. This would of course increase
interrupt latency. Calling OSDurmmy () thus ensures that | will execute a call and a return instruction before
re-disabling interrupts. You could certainly replace OSDunmy() with a macro that executes a ‘no-operation’
instruction and thus slightly reduce the execution time of OSTaskDel (). | didn't think it was worth the effort of

creating yet another macro that would require porting.

We can now continue with the deletion process of the task. After we re-disable interrupts, re-enable scheduling by
decrementing the lock nesting counter L4.11(13). We then call the user definable task delete hook,
OSTaskDel Hook() L4.11(14). Thisalows user defined TCB extensions tobe relinquished. Next, we decrement
the task counter to indicate that there is one less task being managed by p C/OS-11. We remove the OS_TCB from the
priority table by simply replacing the link to the OS_TCB of the task being deleted with aNULL pointer L4.11(15).
We then remove the OS_TCB of the task to delete from the doubly-linked list of OS_TCBs that starts at OSTCBLi st
L4.11(16). You should note that there is no need to check for the case wherept cb- >OSTCBNext == 0 because we
cannot deletetheidle task which happens to always be at the end of the chain. TheOS_TCBisreturned to the free list
of OS_TCBsto alow another task to be created L4.11(17). Last, but not least, the scheduler L4.11(18) is called to see
if ahigher priority task has been made ready to run by an ISR that would have occurred when we re-enabled interrupts
at step L4.11(11).

| NT8U OsSTaskDel (I NT8U pri o)
{

oS TCB *pt cb;

OS EVENT *pevent ;

if (prio == CS IDLEPRIO { (1)
return (OS_TASK DEL_I| DLE);

}

if (prio >= OS_LONEST PRIO & prio != OS5 PRI O SELF) { (2)
return (GS PRIO I NVALID);

}

OS_ENTER_CRI TI CAL() ;
if (CSIntNesting > 0) { (3)




OS EXIT CRITI CAL();
return (CS_TASK DEL_|I SR);

}
if (prio == OS PRI O SELF) { (4)
prio = OSTCBCur - >C8TCBPri 0;
}
if ((ptcb = OSTCBPrioTbl[prio]) !'= (OS_TCB *)0) { (5)
i f ((CSRdyThl [ pt cb->0STCBY] &= ~ptcb->CSTCBBitX) == 0) { (6)
OSRdyG p &= ~pt cb- >OSTCBBI t Y;
}
if ((pevent = ptcb->0STCBEventPtr) != (OS_EVENT *)0) { (7)
i f ((pevent->0SEvent Tbl [ pt cb- >OSTCBY] &= ~ptcb->0STCBBitX) == 0) {
pevent - >OSEvent G p & ~ptch->OSTCBBi t Y;
}
}
ptcb->0STCBD Yy = 0; (8)
pt cb- >OSTCBSt at = OS_STAT_RDY; (9)
OSLockNest i ng++; (10)
CS_EXIT_CRITI CAL() ; (11)
asDumy() ; (12)
OS_ENTER CRI Tl CAL() ;
OSLockNesti ng- - ; (13)
OSTaskDel Hook( pt cb) ; (14)
OSTaskCtr - -;
OSTCBPri oThl [prio] = (OS_TCB *)O0; (15)
i f (ptch->0STCBPrev == (CS_TCB *)0) { (16)
pt cb- >OSTCBNext - >CSTCBPrev = (OS_TCB *)0;
OSTCBLI st = pt cb- >OSTCBNext ;
1 else {
pt cb- >OSTCBPr ev- >OSTCBNext = pt ch- >OSTCBNext ;
pt cb- >OSTCBNext - >OSTCBPrev = pt cb- >OSTCBPr ev;
}
pt cb- >CSTCBNext = OSTCBFreeli st ; (17)
OSTCBFr eeli st = ptcbh;
OS_EXIT_CRI TI CAL() ;
GsSched() ; (18)
return (CS_NO ERR);
} else {
OS5 EXI T_CRI Tl CAL() :
return (OS_TASK DEL_ERR);
}

Listing 4.11, Task Delete

4.05 Requesting to delete a task, OSTaskDel Req()

Sometimes, atask may own resourcessuch asamemory buffersor asemaphore. |f another task attemptsto deletethis
task then, the resource would not be freed and thus would be lost. In this type of situation, you would need to

somehow signal the task that owns these resources to tell it to delete itself when it’s done with the resources. Y ou can
accomplish thiswith the OSTaskDel Req() function.

Both the requestor and the task to be deleted need to call OSTaskDel Req(). The requestor code would look as
showninlisting 4.12. Thetask that makestherequest needsto determinewhat condition(s) will cause arequest for the
task to bedeleted L4.12(1). Inother words, your application will determinewhat condition(s) will lead to thisdecision.
If the task needs to be deleted then you call OSTaskDel Req() by passing the priority of the task to be deleted

L4.12(2). If thetask to delete does not exist thenOSTaskDel Req() returnsOS_TASK_NOT_EXI ST. You would
get thisif the task to delete has already been deleted or, it has not been created yet. If thereturnvalueisOS_NO_ERR
then, the request has been accepted but the task has not been deleted yet. Y ou may want to wait until the task to be




deleted does in fact delete itself. You can do this by delaying the requestor for a certain amount of timelikel did in
L4.12(3). | decided to delay for one tick but you can certainly wait longer if needed. When the regquested task
eventually deletes itself, the return value in L4.12(2) would be OS_TASK_NOT_EXI ST and the loop would exit

L4.12(4).

voi d Request or Task (void *pdata)

{
I NT8U err;
pdata = pdat a;
for (;;) {
/* Application code */
if (' TaskToBeDel eted()’ needs to be del eted) { (1)
whi | e (OSTaskDel Req( TASK_TO DEL_PRI O != OGS _TASK NOT_EXI ST) { (2)
OSTi neDl y(1) ; (3)
}
}
/* Application code */ (4)
}

Listing 4.12, Requesting a task to delete itself.

The code for the task that needs to deleteitself is shown in listing4.13. Thistask basically needsto ‘poll’ aflag that
residesinsidethetask’s OS_TCB. Thevalue of thisflagisobtained by callingOSTaskDel Req( OS_PRI O_SELF).

When OSTaskDel Req() returns OS_TASK_DEL_REQ L4.13(1) to its caler, it indicates that another task has

requested that thistask needsto be deleted. In this case, the task to be deleted rel eases any resources owned L4.13(2)
and callsOSTaskDel (OS_PRI O_SELF) to deleteitself L4.13(3). As previously mentioned, the code for the task
isnot actually deleted. Instead, u C/OS-I1 will simply not schedule the task for execution. In other word, the task code
will no longer run. You can, however, re-create the task by caling either OSTaskCreate() or
OSTaskCr eat eExt ().

voi d TaskToBeDel eted (void *pdat a)

{
I NT8U err;
pdata = pdat a;
for (53) {
/* Application code */
i f (OSTaskDel Req(OS PRI O SELF) == OS TASK DEL REQ { (1)
Rel ease any owned resources; (2)
De-al | ocate any dynam c nenory;
OSTaskDel (GS_PRI O SELF); (3)
} else {
/* Application code */
}
}

Listing 4.13, Requesting atask to delete itsdlf.

ThecodeforOSTaskDel Req() isshowninlisting4.14. Asusual, we need to check for boundary conditions. First,

we notify the caller in case he requests to delete the idle task L4.14(1). Next, we must ensure that the caller is not
trying to request to delete an invalid priority L4.14(2). If the caller is the task to be deleted, the flag stored in the
OS_TCBwill bereturned L4.14(3). If you specified atask with apriority other thanOS_PRI O_SELF then, if the task




exist L4.14(4), we set the internal flag for that task L4.14(5). If the task does not exist, we return
OS_TASK_NOT_EXI ST toindicate that the task must have deleted itself L4.14(6).

I NTBU OSTaskDel Req (1 NT8U pri 0)

{
BOOLEAN st at ;

| NT8BU err;
OCS TCB *ptch;

if (prio == CS IDLE PR O { (1)
return (GS TASK DEL | DLE);
}

if (prio >= OS5 LONEST PRIO & prio != OS5 PRIO SELF) { (2)
return (GS PRIO I NVALID);

if (prio == 08 PRI O SELF) { (3)
OS_ENTER CRI Tl CAL() ;
stat = OSTCBCur - >CSTCBDel Req;
0S EXI T_CRITI CAL() ;
return (stat);
} else {
0S_ENTER CRI Tl CAL() ;
if ((ptcb = OSTCBPrioThl[prio]) !'= (OS_TCB *)0) { (4)
pt cb- >OSTCBDel Req = OS_TASK _DEL_REQ (5)
err 0S_NO ERR;
} else {
err

O5_TASK_NOT_EXI ST; (6)

}
S EXIT_CRITI CAL();
return (err);

Listing 4.14, OST askDelReq(().

4.06 Changing a Task’ s Priority, OSTaskChangePrio()

When you create atask, you assign the task apriority. At runtime, you can change the priority of any task by calling
OSTaskChangePri o(). Inother words, p C/OS|1 allowsyou to change priorities dynamically.

The code for OSTaskChangePri o() isshown in listing 4.15. You cannot change the priority of the idle task
L4.15(7). You can either change the priority of the calling task or another task. To change the priority of the calling
task you can must either specify the ‘old’ priority of that task or specify OS PRI O SELF and
OSTaskChangePri o() will determine what the priority of the calling task isfor you. Y ou must also specify the
‘new’ (i.e. desired) priority. Because p C/OS-I1 cannot have multiple tasks running at the same priority, we need to
check that the desired priority isavailable L4.15(2). If the desired priority is available, ) C/OS-I1 reserves the priority
by loading ‘something’ in the OSTCBPri oTbl [] thus reserving that entry L4.15(3). This allows us to re-enable
interrupts and know that no other task can either create a task at the desired priority or have another task call
OSTaskChangePri o() by specifying the same ‘new’ priority. Thisis done so that we can pre-compute some
valuesthat will be stored inthetask’sOS_TCB L4.15(4). These values are used to put or remove the task in or from
the ready list (see section 3.04, Ready List).

We then check to see if the current task is attempting to changeits priority L4.15(5). Next, we need to see if the task
for which we are trying to change the priority exist L4.15(6). Obviously, if it's the current task then this test will
succeed. However, if we are trying to change the priority of atask that doesn’'t exist then, we must relinquish the
‘reserved’ priority back to the priority table, OSTCBPr i oTbl [ ] L4.15(17), and return an error code to the caller.




Wenow remove the pointer to the OS_TCB of the task from the priority table by inserting aNULL pointer L4.15(7).
Thiswill make the ‘old’ priority available for reuse. Then, we check to seeif the task for which we are changing the
priority isready-torun L4.15(8). If itis, it must be removed from the ready list at the current priority L4.15(9) and
inserted back in the ready list at the new priority L4.15(10). Note herethat we use our pre-computed values L4.15(4)
toinsert the task in the ready list.

Ift hetask isready then, it could be waiting on asemaphore, amailbox or aqueue. Weknow that thetask iswaiting for
one of these events if the OSTCBEvent Pt r isnon-NULL L4.15(11). If the task is waiting for an event, we must
removethetask fromthewalit list (at theold priority) of the event control block (see section 6.00,Event Control Block)
and insert the task back in the wait list but thistime at the new priority L4.15(12). The task could be waiting for time
to expire (see chapter 5, Time Management) or the task could be suspended (see section 4.07, Suspending a Task,

OSTaskSuspend()). Inthese cases, items L4.15(8) through L4.15(12) would be skipped.

Next, we store a pointer to thetask’'s OS_TCB in the priority table, OSTCBPr i oTbl [] L4.15(13). The new priority
issaved inthe OS_TCB L4.15(14) and the pre-computed values are also saved inthe OS_TCB L4.15(15). After we

exit the critical section, the scheduler iscalled in case the new priority is higher than the old priority or the priority of
the calling task L4.15(16).

I NTBU OSTaskChangePri o (I NT8U ol dpri o, | NT8U newpri 0)

S TCB  *ptcb;
OCS_EVENT *pevent;

| NT8U X;

| NT8U y;

| NT8U bi t x;

| NT8U bity;

if ((oldprio >= OS LOMNEST PRIO & oldprio '= O5 PRIO SELF) || (1)

newprio >= OS5 LONEST_PRIO {
return (OGS _PRI O INVALID);

}
0S_ENTER CRI Tl CAL() ;
if (OSTCBPrioThl [newprio] !'= (OS_TCB *)0) { (2)
OGS EXIT_CRITI CAL();
return (OS_PRI O EXI ST);
} else {
OSTCBPri oThl [ newprio] = (OS_TCB *) 1; (3)
OS_EXI T_CRI Tl CAL() ;
y = newprio >> 3; (4)
bity = CSMapThl [y];
X = newpri o & 0x07;
bitx = OSMapThl [ X] ;
0S_ENTER CRI Tl CAL() ;
if (oldprio == OGS PRIO SELF) { (5)
ol dpri o = OSTCBCur - >CSTCBPr i 0;
}
if ((ptcb = OSTCBPrioThl[oldprio]) != (OS_TCB *)0) ({ (6)
OSTCBPri oThl [ol dprio] = (OS_TCB *)0; (7)
i f (OSRdyTbl [ pt cb- >OSTCBY] & ptcb->0STCBBi t X) { (8)

i f ((OSRdyThl [ pt cb->0OSTCBY] &= ~ptcbh->CSTCBBitX) == 0) { (9)
OCSRdyG p &= ~pt cb->CSTCBBi t Y;

}
OCSRdy G p | = bity; (10)
CSRdyThl [y] | = bitx;

1} else {

if ((pevent = ptch->0OSTCBEventPtr) != (OS_EVENT *)0) { (11)
i f ((pevent->CSEvent Thl [ pt cb- >OCSTCBY] &= ~ptch->0STCBBit X) == 0) {
pevent - >OSEvent G p & ~ptch->OSTCBBI tY;




}
pevent - >CSEvent G p | = bity; (12)
pevent - >CSEvent Tbl [y] | = bi tx;
}
}
OSTCBPri oThl [ newpri o] = ptcb; (13)
pt cb- >OSTCBPri o = newpri o; (14)
pt cb- >CSTCBY =y, (15)
pt cb- >OSTCBX = X,
pt cb- >OSTCBBi t Y = bity;
pt cb- >OSTCBBI t X = bitx;
08 EXI T_CRI Tl CAL() ;
0sSched() ; (16)
return (OS_NO ERR);
} else {
OSTCBPri oThbl [ newprio] = (CS_TCB *)O0; (17)

OS5 _EXI T_CRI Tl CAL() ;
return (CS_PRI O ERR);

Listing 4.15, OSTaskChangePrio().

4.07 Suspending a Task, OSTaskSuspend()

It is sometimes useful to explicitly suspend the execution of a task. This is accomplished with the
OSTaskSuspend() function call. A suspended task can only be resumed by calling the OSTaskResune()
function call. Task suspension is additive. This means that if the task being suspended is also waiting for time to
expire then the suspension needs to be removed and the time needs to expirein order for the task to be ready-torun. A
task can either suspend itself or another task.

The code for OSTaskSuspend() isshowninlisting 4.16. Asusual, we check boundary conditions. First, we must
ensurethat your applicationisnot attempting to suspendtheidletask L4.16(1). Next, you must specify avalid priority
L4.16(2). Remember than the highest valid priority number (i.e. lowest priority) isOS_LOWEST_PRI O. Note that
you can suspend the statistic task. Y ou may have noticed that thefirst test L4.16(1) isreplicated in L4.16(2). | did this
to be backward compatible with p C/OS. Thefirst test could be removed to save alittle bit of processing time but, this
isreally insignificant so | decided to leaveit.

Next, we check to see if you specified to suspend the calling task L4.16(3) by specifying OS_PRI O_SELF. You
could aso decided to suspend the calling task by specifying its priority L4.16(4). In both of these cases, the schedul er
will need to be called. Thisiswhy | created the local variablesel f which will be examined at the appropriate time.
If we are not suspending the calling task then we will not need to run the scheduler because the calling task is
suspending alower priority task.

We then check to see that the task to suspend exist L4.16(5). If the task to suspend exist, we remove it from the ready
list L4.16(6). Note that the task to suspend may not be in the ready list because it’swaiting for an event or for time to
expire. Inthiscase, the corresponding bit for the task to suspend inOSRdy Thbl [ ] would already be cleared (i.e. 0).
Clearing it again is faster than checking to see if it's clear and then clearing it if it's not. We then set the
OS_STAT_SUSPEND flag inthe task’s OS_TCB to indicate that the task is now suspended L4.16(7). Finaly, we call
the scheduler only if the task being suspended isthe calling task L4.16(8).




I NTBU OSTaskSuspend (1 NT8U pri o)
{

BOOLEAN  sel f;

oS TCB *pt cb;

if (prio ==C05IDLEPRO { (1)
return (OS_TASK SUSPEND | DLE);

}
if (prio >= OS5 LONEST PRIO & prio != OGS PRIO SELF) { (2)
return (CS_PRI O I NVALID);

}

OS_ENTER CRITI CAL();

if (prio == OS5 PRIO SELF) { (3)
prio OSTCBCur - >CSTCBPr i o;
sel f TRUE;

} else if (prio == OSTCBCur->0STCBPrio) { (4)
sel f TRUE;

} else {
sel f = FALSE;

}
if ((ptcb = OSTCBPrioTbl [prio]) == (OS_TCB *)0) { (5)
S EXI T_CRITI CAL() ;
return (OS_TASK SUSPEND PRI O ;
} else {
if ((OSRdyTbl [ptcbh->08TCBY] & ~ptcb->CSTCBBitX) == 0) { (6)
OSRdyG' p &= ~pt cbh- >CSTCBBI t Y;

}

pt cb- >OSTCBSt at | = OS_STAT_SUSPEND, (7)

0S EXI T_CRITI CAL();

if (self == TRUE) { (8)
ossched() ;

return (CS_NO ERR);

Listing 4.16, OST askSuspend().

4.08 Resuming a Task, OSTaskResume()

As mentioned in the previous section, a suspended task can only be resumed by calling OSTaskResune(). The
codefor OSTaskResume() isshownin listing 4.17. Because we cannot suspend the idle task we must verify that
your application is not attempting to resume thistask L4.17(1). You will note that this test also ensures that you are
not trying to resume OS_PRI O SELF (OS_PRI O_SELF is #def i ned to OxFF which is always greater than
OS_LOWEST_PRI O because this wouldn’t make sense.

The task to resume must exist because we will be manipulating its OS_TCB L4.17(2) and, it must also have been
suspended L4.17(3). We remove the suspension by clearing the OS_STAT_SUSPEND bit in the OSTCBSt at field
L4.17(4). For thetask to be ready-to-run, the OSTCBDI y field must be zero L4.17(5) because there are no flags in
OSTCBSt at to indicate that a task is waiting for time to expire. The task is made ready-to-run only when both
conditions are satisfied L4.16(6). Finally, the scheduler is called to seeif the resumed task has a higher priority than
the calling task L4.17(7).

I NTBU OSTaskResune (| NT8U pri 0)

{
OS5 _TCB  *ptch;




if (prio >= O LONEST_PRIO { (1)
return (OGS PRIO I NVALID);

}
OS_ENTER CRI Tl CAL() ;
if ((ptcb = OSTCBPrioTbl[prio]) == (0S_TCB *)0) { (2)
OS_EXIT_CRITI CAL();
return (GS_TASK RESUVE PRI O ;
} else {
if (ptch->0STCBStat & OS_STAT_SUSPEND) { (3)
if (((ptcb->0STCBStat &= ~OS_STAT_SUSPEND) == OS_STAT_RDY) && (4)
(ptcbh->0STCBDlY == 0)) { (5)
OSRdy G p | = ptcbh->CSTCBBIitY; (6)
OSRdyTbl [ pt cb- >OSTCBY] | = pt ch->0OSTCBBI t X;
S EXIT_CRITI CAL() ;
OSSched() ; (7)
} else {
s EXIT_CRITI CAL() ;
}
return (CS_NO ERR);
} else {
08 EXIT_CRITI CAL();
return (OS_TASK NOT_SUSPENDED) ;
}
}

4.09 Getting Information about a Task, OSTaskQuery()

Y our application can obtain information about itself or other application tasks by callingOSTaskQuer y() . Infact,
OSTaskQuer y() obtainsacopy of the contents of the desired task’'s OS_TCB. Thefieldsthat are available to you
in the OS_TCB depend on the configuration of your application (see OS_CFG. H). Indeed, because p C/OS-II is
scalable, it only includes the features that your application requires.

To call OSTaskQuer y() , your application must allocate storage for an OS_TCB as shown in listing 4.18. This
OS_TCBisina totally different data space asthe OS_TCBs allocated by u C/OS 1. After callingOSTaskQuer y(),
thisOS_TCB will contain asnapshot of theOS_TCB for thedesiredtask. Y ou heed to be careful withthelinksto other
OS_TCBs(i.e. OSTCBNext and OSTCBPr ev); you don’t want to change what these links are pointing to! In general,
you would only use this function to see what atask is doing—agreat tool for debugging.




OS_TCB MyTaskDat a;

void MyTask (void *pdata)

pdata = pdat a;

for () {
/* User code */
err = OSTaskQuery(10, &I\/yTaskData)
/* Exam ne error code ..
/* User code */

Listing 4.18, Obtaining infor mation about a task.

The code for OSTaskQuer y() isshowninlisting 4.19. Y ou should note that | now allow you to examine ALL the
tasks, including the idle task L4.19(1). You need to be especially careful NOT to change what OSTCBNext and
OSTCBPr ev are pointing to. Asusual, we check to seeif you want information about the current task L4.19(2) and
also, the task must have been created in order to obtain information about it L4.19(3). All fields are copied using the
assignment shown instead of field by field L4.19(4). This is much faster because the compiler will most likely

generate memory copy instructions.

| NT8U OSTaskQuery (I NT8U prio, OGS TCB *pdat a)

{
OS_TCB *pt cb;

if (prio > OS LOAEST PRIO && prio !'= OS5 PRIO SELF) {
return (CS_PRI O I NVALID);

}

OS ENTER CRITI CAL();

if (prio == O8_ PRI O SELF) {
prio = OSTCBCur - >CSTCBPri 0;

}

if ((ptcb = OSTCBPrioTbl [prio]) == (O5_TCB *)0) {
CS EXIT_CRITI CAL();
return (OS5 PRI O ERR);

}

*pdata = *ptcb;

CS EXIT_CRITICAL();

return (OS_NO ERR);

(1)

(2)

(3)

(4)

Ligting 4.19, OSTaskQuery()




Chapter 5

Time Management

We saw in section 3.10 that p C/OS-11 (as do other kernels) requires that you provide a periodic interrupt to keep track

of time delays and timeouts. This periodic time sourceis called aClock Tick and should occur between 10 and 100
times per second, or Hertz. The actual frequency of the clock tick depends on the desired tick resolution of your
application. However, the higher the frequency of the ticker, the higher the overhead.

Section 3.10 discussed the tick 1SR (Interrupt Service Routine) as well as the function that it needs to call to notify
p C/OSH | about the tick interrupt, OSTi meTi ck( ). This chapter will describe five services that deal with time

issues:

1) OSTinmeDl y(),

2) OSTi meDl yHVSM ),
3) OSTi neDl yResume(),
4) OSTi neCet () and,

5) OSTi meSet ().

The functions described in this chapter are found in the fileOS_TI ME. C.

5.00 Delaying a task, OSTimeDly()

p C/OSH | provides a service that allows the calling task to delay itself for auser specified number of clock ticks. This
function is called OSTi meDl y() . Calling this function causes a context switch and forces p C/OS-11 to execute the

next highest priority task that isready-to-run. Thetask calling OSTi meDl y() will be made ready-to-run as soon as
thetime specified expiresor, if another task cancels the delay by calling OSTi meDl yResume(). You should note
that thistask will run only when it’ s the highest priority task.

Listing 5.1 shows the code for OSTi meDl y() . Ascan be seen, your application calls this function by supplying the
number of ticks to delay and can be avalue between1 and 65535. If you specify a value of zero L5.1(1), you are
indicating that you don’'t want to delay the task and thus the function will immediately returnto the caler. A nonzero
valuewill cause OSTi neDl y() toremove the current task from theready list L5.1(2). Next, the number of ticks are
stored in the OS_TCB of the current task L5.1(3) where it will be decremented on every clock tick by
OSTi meTi ck() . Finaly, sincethetask isno longer ready, the scheduler is called L5.1(4) so that the next highest
priority task that is ready-to-run gets executed.

void OSTineDy (I NT16U ticks)

if (ticks > 0) { (1)
OS_ENTER_CRI Tl CAL() ;
i f ((CSRdyThl [ GSTCBCur - >CSTCBY] &= ~OSTCBCur- >CSTCBBitX) == 0) { (2)
OSRdyG p & ~OSTCBCur ->0STCBBi t Y;
}
OSTCBCur->0sTCBDl y = ti cks; (3)

0S_EXI T_CRI TI CAL() ;




GSSched() ; (4)

Listing 5.1, OSTimeDly()

It isimportant to realize that the resolution of adelay is between 0 and 1 tick. In other words, if you try to delay for
only onetick, you could end up with adelay between 0 and 1 tick. Thisisassuming, however, that your processor is
not heavily loaded. Figure5-1illustrateswhat happens. A tick interrupt occurs every 10 mS F5-1(1). Assuming that
you are not servicing any other interrupts and you have interrupts enabled, the tick ISR will be invoked F5-1(2). You
may have a few high priority tasks (i.e. HPTSs) that were waiting for time to expire so they will get to execute next
F5-1(3). Thelow priority task (i.e. LPT) shownin figure 5-1 then getsachanceto execute and, upon completion, calls
OSTi meDl y(1) at the moment shown at F5-1(4). p C/OS I puts the task to sleep until the next tick. When the next
tick arrives, thetick ISR executes F5-1(5) but thistime, there are no HPTs to execute and thus, p C/OS |1 executes the
task that delayed itself for 1 tick F5-1(6). Asyou can see, thetask actually delayed for lessthan onetick! On heavily
loaded systems, the task may call OSTi meDl y(1) afew tens of microseconds before the tick occurs and thus the
delay would result in almost no delay because the task would immediately be rescheduled. If your application must
delay for at least onetick, you must call OSTi meDl y( 2) thus specifying adelay of 2 ticks!

< 10 mS >

Tick interrupt
ﬁ (1)
OSTickISR()

R
All HPT
Low Priority Task I%

(4)

Task calls OSTimeDly(1) here!

E——— 5mS ——¥

Figure 51, Delay resolution

5.01 Delaying a task, OSTimeDIyHMSM ()

OSTi neDl y() isavery useful function but, your application needs to know timein term of ticks. Y ou can use the
global #def i ne constant OS_TI CKS_PER_SEC (see OS_CFG. H) to convert time to ticks but this is somewhat
awkward. The functionOSTi meDl yHMSM ) hasbeen added so that you can specify timein hours( H), minutes( M),




seconds (S) and milliseconds (M) which is more ‘natural’. Like OSTi meDl y() , calling this function causes a
context switch and forces p C/OS-11 to execute the next highest priority task that is ready-to-run. The task calling
OSTi meDl yHVSM ) will be made ready-to-run as soon as the time specified expires or if another task cancels the
delay by calling OSTi meDl yResume() (see section 5.02). Again, this task will run only when it’s the highest

priority task.

Listing 5.2 shows the code for OSTi meDl yHMSM ) . As can be seen, your application calls this function by

supplying thedelay inhour s, m nut es, seconds andmi | | i seconds. In practice, you should avoid delaying a
task for long periodsof timebecause, it’ salwaysagoodideato get some ‘feedback activity’ from atask (incrementing
counter, blinking an LED, etc.). If however, you do need long delays, i C/OS-I1 can delay atask for 256 hours (close
to 11 days)!

OSTi meDl yHVSM) starts by checking that you have specified valid values for its arguments L5.2(1). Aswith
OSTi neDl y() , OSTi meDl yHVSM ) exitsif you specify no delay L5.2(9). Because i C/OS-11 only knows about
ticks, thet otal number of ticksiscomputed from the specified timeL5.2(3). Thecode showninlisting 5.2 isobviously
not very inefficient. | just showed the equation this way so you can see how the total ticks are computed. The actual
code efficiently factors in OS_TI CKS_PER_SEC. L5.2(3) determines the number of ticks given the specified
milliseconds with rounding to the nearest tick. The value500/ OS_TI CKS_PER_SECONDbasically correspond to
0.5 tick converted to milliseconds. For example, if thetick rate (i.e. OS_TI CKS_PER_SEC) is set to 100 Hz (10 mS)
then adelay of 4 mSwould result in no delay! A delay of 5 mSwould result in adelay of 10 mS, etc.

P C/OSHI only supports delays of 65535 ticks. To support potentially long delays obtained by L5.2(2),

OSTi meDl yHMSM ) determines how many times we need to delay for more than 65535 ticks L5.2(4) aswell asthe
remaining number of ticks L5.2(5). For example, if OS_TI CKS_PER_SEC was 100 and you wanted a delay of 15
minutes then OSTi neDl yHMSM ) would haveto delay for 15* 60 * 100 or, 90000 ticks. Thisdelay is broken down
into two delays of 32768 ticks (because we can’t do adelay of 65536 ticks, only 65535) and one delay of 24464 ticks.

In this case, we would first take care of the remainder L5.2(6) and then, the number of times we exceeded 65536
L5.2(7)-(8) (i.e. done with two 32768 tick delays).

I NT8U GOSTi meDl yHVBM (1 NT8U hours, | NT8U m nutes, |NT8U seconds, |NT16U mlli)
{

| NT32U ti cks;

| NT16U | oops;

if (hours >0 || mnutes >0 || seconds >0 || mlIli > 0) { (1)
if (mnutes > 59) {
return (OS_TIME | NVALI D_M NUTES) ;

}
if (seconds > 59) {

return (OS_TI ME_|I NVALI D_SECONDS) ;
}

if (mlli > 999) {
return (OS_TIME INVALID MLLI);

}
ticks = (1NT32U) hours * 3600L * OS Tl CKS_PER SEC (2)
+ (I NT32U) m nutes * 60L * OS_TI CKS_PER _SEC
+ (1 NT32U) seconds) * C8 Tl CKS PER SEC
+ OS_TICKS PER SEC * ((INT32U)ym Ili + 500L/CS_TI CKS_PER SEC) / 1000L; ( 3)
| oops = ticks / 65536L; (4)
ticks = ticks % 65536L; (5)
OSTi neDl y(ticks); (6)
while (loops > 0) { (7)
OsTi neDl y(32768) ; (8)
CSTi neDl y(32768) ;
| oops- -;
}

return (CS_NO ERR);




} else {
return (OS_TIME_ZERO DLY); (9)
}

Listing 5.2, OSTimeDIyHM SM ()

Because of the way OSTi nmeDl yHMSM ) isimplemented, you cannot resume (see next section) atask that has called
OSTi meDl yHMSM ) with acombined time that exceeds 65535 clock ticks. In other words, if the clock tick runs at
100 Hzthen, you will not be able to resume a delayed task that calledOSTi neDl yHMSM 0, 10, 55, 350) or

higher.

5.02 Resuming a delayed task, OSTimeDIlyResume()

| C/OSH | alows you to resume atask that delayed itself. In other words, instead of waiting for the time to expire, a
delayed task can be made ready-to-run by another task which ‘cancels' the delay. This is done by calling

OSTi meDl yResune() and specifying the priority of the task to resume. Infact, OSTi neDl yResume() can also
resume atask that iswaiting for an event (see Chapter 6,I ntertask Communication & Synchronization) although thisis
not recommended. In this case, the task pending on the event will think it timed out waiting for the event.

I NT8U OSTi meDl yResune (| NT8U pri o)
OS_TCB *pt cb;
if (prio >= 08 LONEST PRIO { (1)
return (CS_PRI O I NVALID);
}

OS_ENTER CRI Tl CAL();
ptcb = (OS_TCB *) OSTCBPri oThl [ pri o] ;

if (ptcb != (OS5 TCB *)0) { (2)
if (ptch->0STCBDY != 0) { (3)
ptcbh->0STCBDy = 0; (4)

if (!(ptch->0STCBStat & OS STAT SUSPEND)) { (5)
OSRdy G p | = ptcb->0STCBBI t Y; (6)

OSRdy Thbl [ pt cb- >CSTCBY] | = pt ch->0STCBBI t X;

05 EXIT_CRI TI CAL() ;

OSSched() ; (7)
} else {

0S8 EXIT_CRI TI CAL() ;

ieturn (CS_NO ERR);

1} else {
OS5 _EXI T_CRI Tl CAL() ;
return (OS_TI ME_NOT_DLY);

} else {
OCS EXIT _CRITI CAL();
return (OS_TASK NOT_EXI ST);

Listing 5.3, Resuming a delayed task.

The code for OSTi meDl yResune() isshowninlisting 5.3 and starts by making sure you specify avalid priority
L5.3(1). Next, we verify that the task to resume doesin fact exist L5.3(2). If thetask exist, we check to seeif the task




iswaiting for time to expire L5.3(3). Whenever theOS_TCB field OSTCBDI y contains anon-zero value, thetask is
waiting for time to expire, whether because the task called OSTi meDl y (), OSTi neDl yHVSM ) or any of the
PEND functions described in Chapter 6. The delay is then cancelled by forcing OSTCBDI y to zero L5.3(4). A
delayed task may also have been suspended and thus, the task is only made ready-to-run if the task was not suspended
L5.3(5). Thetask isplaced intheready list when the above conditions are satisfied L5.3(6). At this point, we call the
scheduler to seeif the resumed task has a higher priority than the current task L5.3(7). Thiscould result in a context
switch.

Y ou should note that you could also have atask delay itself by waiting on a semaphore, mailbox or a queue with a
timeout (see Chapter 6). Y ou would resume such a task by simply posting to the semaphore, mailbox or queue,
respectively. The only problem with this scenario is that it requires that you allocate an event control block (see
section 6.00) and thus your application would consume alittle bit more RAM.

5.03 System time, OSTimeGet() and OSTimeSet()

Whenever a clock tick occurs, p C/OS-II increments a 32-bit counter. This counter starts at zero when you initiate
multitasking by calling OSSt art () and rolls over after 4,294,967,295 ticks. At atick rate of 100 Hz, this 32-bit

counter rolls over every 497 days. Y ou can obtain the current value of this counter by calling OSTi meCGet (). You
can also change the value of the counter by calling OSTi meSet () . The code for both functionsis shown in listing
5.4. Note that interrupts are disabled when accessing OSTi ne. Thisis because incrementing and copying a 32-bit
value on most 8-bit processors requires multiple instructions that must be treated indivisibly.

I NT32U OSTi neCet (voi d)

I NT32U ti cks;

OS_ENTER _CRI Tl CAL() ;
ticks = OSTi ne;
CS_EXIT_CRITI CAL() ;
return (ticks);

}
voi d OSTi meSet (I NT32U ti cks)
{
OS_ENTER CRITI CAL() ;
OSTine = ticks;
OS_EXI T_CRI Tl CAL() ;
}

Ligting 5.4, Obtaining and setting the system time.




Chapter 6

| ntertask Communication &
Synchronization

p C/OSH | provides many mechanisms to protect shared data and provide intertask communication. We have already
seen two such mechanisms:

1) Disabling and enabling interrupts through the two macros OS_ENTER_CRI TI CAL() and
OS_EXI T_CRI Tl CAL(), respectively. You use these macros when two tasks or atask and an ISR need to

share data. See section 3.00, Critical Sections, section 8.03.02, OS CPU.H, OS ENTER_CRITICAL() and
OS EXIT_CRITICAL() and, section 9.03.02,0S_CPU.H, Critical Sections

2)  Locking and unlocking p C/OS I’s scheduler with OSSchedLock() and OSSchedUnl ock( ), respectively.
Again, you use these services to access shared data. See section 3.06, Locking and Unlocking the Scheduler.

This chapter discusses the other three types of services provided by pu C/OS-I1: Semaphores, Message mailboxes and
M essage queues.

Figure 61 shows how tasks and Interrupt Service Routines (I1SRs) can interact with each other. A task or an ISR
signalsatask F6-1A(1) through akernel object called an Event Control Block (ECB). Thesignal is considered to be
an event which explains my choice of this name. A task can wait for another task or an ISR to signal the object
F6-1A(2). You should notethat only tasks areallowed towait for eventsto occur —an | SR isnot allowed towait on an
ECB. An optional timeout F6-1A(3) can be specified by the waiting task in case the object is not signaled within a
specified timeperiod. Multipletaskscanwait for atask or anl SRto signal an ECB F6-1B. When the ECB issignaled,
only the highest priority task waiting on the ECB will be ‘signaled’ and thus will be made ready-to-run. An ECB can
either be a semaphore, a message mailbox or a message queue as we will see later. When an ECB is used as a
semaphore, tasks will both wait and signal the ECB F6-1C(4).
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Figure 6-1, Use of Event Control Blocks.

6.00 Event Control Blocks
p C/OSH | maintains the state of an ECB in adata structure called OS_EVENT (see uCOS_I1.H). The state of an event

consists of the event itself (a counter for a semaphore, a pointer for a message mailbox and an array of pointersfor a
queue) and, awaiting list for tasks waiting for the event to occur. Each semaphore, mailbox and queueis assigned an

ECB. Thedatastructurefor an ECB isshownin Listing 6.1.

typedef struct {
void *OSEventPtr; /[* Ptr to message or queue structure */
INTBU OSEvent Tbhl [OS EVENT TBL SI ZE]; /* Wait list for event to occur */
I NT16U OSEvent Cnt; /* Count (when event is a semaphore) */




I NTBU  OSEvent Tvpe; /* Event type ) */
I NT8U COSEvent G p; /* Goup for wait |ist */

} OS_EVENT;

Ligting 6.1, Event Control Block data structure

OSEvent Pt r isonly used when the ECB is assigned to amailbox or agueue. Inthiscase, OSEvent Pt r

pointsto the message when used for amailbox or apointer to amessage queue datastructure (see section 6.06,
Message Mailboxes and section 6.07, Message Queues) .

OSEvent Thl [ ] andOSEvent Gr p aresimilar toOSRdy Tbl [ ] and OSRdy Gr p, respectively except that

they contain alist of tasks waiting on the event instead of being alist of tasks ready-to-run (see section 3.04,
Ready List).

OSEvent Cnt isused to hold the semaphore count when the ECB is used for a semaphore (see section 6.05,
Semaphores).

OSEvent Type contains the type associated with the ECB and can have the following values:
OS_EVENT_SEM OS_EVENT_TYPE_MBOX or OS_EVENT_TYPE_Q Thisfield is used to make sure you

are accessing the proper object when you perform operations on these objects through pu C/OS-11’s service
calls.

Each task that needs to wait for the event to occur is placed in the wait list consisting of the two
variables, . OSEvent Grp and . OSEvent Tbhl [] . Notethat | used adot (i.e. . ) in front of the variable name to

indicate that the variable is part of adata structure. Task priorities are grouped (8 tasks per group) in. OSEvent Gr p.
Each bitin. OSEvent G p is used to indicate whenever any task in agroup is waiting for the event to occur. When a
task is waiting, its corresponding bit in set in the wait table, . OSEvent Tbl[]. The size (in bytes)
of . OSEvent Thl [] depends on O5_LOWEST_PRI O (see uCOS_I | . H). This alows p C/OS-II to reduce the
amount of RAM (i.e. data space) when your application requires just afew task priorities.

The task that will be resumed when the event occursis the highest priority task waiting for the event and corresponds
to the lowest priority number which has a bit set in . OSEvent Tbl [ ] . The relationship between . OSEvent G p

and. OSEvent Tbl [] isshownin Figure 6-2 and is given by the following rules:




BitOin. OSEvent Gr p is1when any bitin. OSEvent Thl [ 0] isl.
Bit1in. OSEvent Gr p is1whenany bitin. OSEvent Thl [ 1] isl.
Bit2in. OSEvent Gr p is1when any bitin. OSEvent Tbl [ 2] isl.
Bit3in. OSEvent Gr p is1when any bitin. OSEvent Tbl [ 3] isl.
Bit4in. OSEvent Gr p is1whenany bitin. OSEvent Tbl [ 4] isl.
Bit5in. OSEvent Gr p is1when any bitin. OSEvent Tbl [ 5] isl.
Bit6in. OSEvent Gr p is1when any bitin. OSEvent Tbl [ 6] isl.

Bit 7in. OSEvent Gr p is1when any bitin. OSEvent Thl [ 7] isl.

.OSEventGrp
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Bit position in .OSEventGrp and
Index into .OSEventTbl[OS_LOWEST_PRIO /8 + 1]

Figure6-2, Wait lig for task waiting for an event to occur.

Thefollowing piece of codeis used to place atask in the wait list list:

pevent - >C8Event G p | = C8MapTbl [prio >> 3];
pevent - >OSEvent Tbl [prio >> 3] |= OCSMapTbl [prio & 0x07];

Listing 6.2, Making a task wait for an event.




pri o isthetask's priority and pevent isapointer to the event control block.

Y ou should realize from listing 6.2 that inserting atask in the wait list always takes the same amount of time and does
not depend on how many tasksareinyour system. Also, from Figure6-2, thelower 3 bitsof thetask'spriority are used
to determine the bit positionin. OSEvent Tbl [ ], whilethe next three most significant bits are used to determine the
index into . OSEvent Tbl []. Note that OSMapTbl [] (see OS_CORE. C) is atable in ROM, used to equate an
index from 0 to 7 to abit mask as shownin thetable 6.1.

Index Bit mask (Binary)
(00000001
(00000010
(00000100
(00001000
(00010000
(00100000
01000000
10000000

Table 6.1, Contents of OSMapTDhl([].

~NoO|O|h|WIN[F|O

A task isremoved from the wait list by reversing the process. The following code is executed in this case:

if ((pevent->CSEvent Tbl [prio >> 3] &= ~OsMapTbl[prio & 0x07]) == 0) {
pevent - >CSEvent G p &= ~OSMapThl [prio >> 3];
}

Listing 6.3, Removing a task from a wait list.

This code clears the bit corresponding to the task in. OSEvent Thl [ ] and clearsthebitin. OSEvent G p only if
all tasksin a group are not waiting, i.e. al bitsin . OSEvent Tbl [ pri o >> 3] are 0. Another table lookup is
performed, rather than scanning through the table starting with . OSEvent Tbl [ 0] , to find the highest priority task
that is waiting for the event. OSUnMapThbl [ 256] isapriority resolution table (see OS_CORE. C). Eight bits are
used to represent when tasks are waiting in agroup. The least significant bit has the highest priority. Using this byte
to index the table returns the bit position of the highest priority bit set, a number between 0 and 7. Determining the
priority of the highest priority task waiting for the event is accomplished with the following section of code:




y = OSUnwapTbl [ pevent - >OSEvent G p] ;
X = OSUnMapTbl [ pevent - >OSEvent Tbl [y] ] ;
prio = (y << 3) + x;

Ligting 6.4, Finding the highest priority task waiting for the event.

For example, if . OSEvent Gr p contains 01101000 (binary) then the table lookup OSUnMapTbl [ . OSEvent Gr p]
would yield avalue of 3, which correspondsto bit #3in. OSEvent Gr p. Notesthat bit positions are assumed to start
on theright with bit #0 being the rightmost bit. Similarly, if . OSEvent Tbl [ 3] contained 11100100 (binary) then
OSUnMapTbl [ . OSEvent Thbl [ 3] ] wouldresultinavalueof 2 (i.e. bit#2). Thepriority of thetask waiting (pri o)
would then be 26 (3* 8 + 2)!

The number of ECBs to allocate depends on the number of semaphores, mailboxes and queues needed for your

application. The number of ECBs is established by the #defi ne OS_MAX_EVENTS which you define in

OS_CFG H. When OSI ni t () iscalled (see section 3.11), all ECBs are linked in asingly linked list - the list of free
ECBs (see figure 63). When a semaphore, mailbox or queue is created, an ECB is removed from this list and

initialized. ECBs cannot be returned to the list of free ECB because semaphores, mailboxes and queues cannot be
deleted.

0S_EVENT

OSEvent Freeli st

. > > - > - > > - » 0

> 0S_MAX_EVENTS >

Figure6-3, List of free ECBs.

There are four common operations that can be performed on ECBs:

1) Initidizean ECB
2) Makeatask ready
3) Makeatask wait for an event

4) Makeatask ready because atimeout occurred while waiting for an event.

To avoid duplicating code and thus to reduce code size, four functions have been created to performs these operations:
OSEvent Wai t Li st1nit(),0SEvent TaskRdy(),OSEvent Wai t () and OSEvent TQ(), respectively.

6.01 I nitializng an ECB, OSEventWaitListl nit()

Listing 6.5 shows the code for OSEvent Wi t Li st | ni t () whichisafunction called when a semaphore, message
mailbox or amessage queueis created (seeOSSenCr eat e() ,OSMooxCr eat e() orOSQCr eat e() ). All weare




trying to accomplish in OSEvent Wai tLi st1nit() is to indicate that no task is waiting on the ECB.
OSEvent Wi t Li st 1 nit () ispassed apointer to an event control block which is assigned when the semaphore,

message mailbox or message queue is created.

void OSEventWaitListlnit (OS EVENT *pevent)

{
I NT8U i ;
pevent - >CSEvent G p = 0x00;
for (i =0; i < OS5 EVENT_TBL_SI ZE; i++) {
pevent ->CSEvent Tbl [i] = 0x00;
}
}

Listing 6.5, Initializing the wait list.

6.02 Making a task ready, OSEventTaskRdy()

Listing 6.6 showsthe codefor OSEvent TaskRdy() . Thisfunctioniscalled by OSSenPost () ,OSMooxPost (),
OSQPost () and OSQPost Front () when an ECB is signaled and the highest priority task waiting on the ECB
needs to be made ready-to-run. In other words, OSEvent TaskRdy() removesthe highest priority task (HPT) from

the wait list of the ECB and makes this task ready-to+un. Figure 6-4 is used to illustrate the first four operation
performed in OSEvent TaskRdy() .

OSEvent TaskRdy() starts by determining the index into the. OSEvent Rdy Tbl [ ] of the HPT L6.6/F6-4(1), a
number between 0 and OS_LOWEST_PRI O 8+1. The bit mask of the HPT in . OSEvent G p is then obtained
L6.6/F6-4(2), seetable 6.1 for possible values. We then determine the bit position of thetask in. OSEvent Tbl [ ]
L6.6/F6-4(3), avalue between0 andOS_LOWEST_PRI O 8+1. Next, the bit mask of theHPT in. OSEvent Thl [ ]
is determined L6.6/F6-4(4), see table 6.1 for possible values. The priority of the task being made ready-to-run is
determined by combining the x and y indexes L6.6(5). At this point, we can now extract the task from the wait list
L6.6(6).

The Task Control Block (TCB) of the task being readied contains information that also needs to be changed. We can
thus obtain a pointer to that TCB knowing the task’s priority L6.6(7). Because the HPT is not waiting anymore, we
need to make sure that OSTi meTi ck() will not attempt to decrement the . OSTCBDI y value of that task. We

prevent this by forcing thisfield to0 L6,6(8). We then force the pointer to the ECB toNUL L because the HPT will no
longer be waiting on this ECB L6.6(9). A message is sent to the HPT if OSEvent TaskRdy() is called by either
OSMhoxPost () or OSQPost () . Thismessageis passed as an argument and needs to be placed in the task’s TCB
L6.6(10). When OSEvent TaskRdy() iscalled, thensk argument contains the appropriate bit mask to clear the bit
in . OSTCBSt at which corresponds to the type of event signaled (OS_STAT_SEM, OS_STAT_MBOX or
OS_STAT_Q seeuCOS 11 . HL6.6(11). Finaly, if the OSTCBStat indicatesthat thetask isready-to-run L6.6(12),
weinsert thistask in p C/OS-11"sready list L6.6(13). Note that the task may not be ready-to-un because it could have

been explicitly suspended (see section 4.07, Suspending a Task, OSTaskSuspend() and section 4.08, Resuming a Task,
OSTaskResume()).

Y ou should note that OSEvent TaskRdy( ) iscalled with interrupts disabled.

void OSEvent TaskRdy (OS_EVENT *pevent, void *msg, | NT8U mnsk)

{
OS_TCB *pt cb;
I NTBU  Xx;
I NTBU v;
INT8U  bitx;

INTBU bhity;




| NT8U prio;

y = OSUnMapThbl [ pevent - >CSEvent G p] ;

(1)

bity = OSvapThbl [y]; (2)
X = OSUnMapTbl [ pevent - >OSEvent Tbl [y] ] ; (3)
bitx = OsvapTbl [ x]; (4)
prio = (INT8U) ((y << 3) + x); (5)
if ((pevent->CSEvent Thl [y] &= ~bitx) == 0) { (6)
pevent ->CSEvent G p & ~bhity;
ptcb = OSTCBPri oThl [prio]; (7)
pt cb- >OSTCBD y = 0; (8)
pt cb- >CSTCBEvent Ptr = (OS_EVENT *) 0; (9)
#if (OS5 QEN && (OS5 MAX @8 >= 2)) || OS5 _MBOX_EN
pt cb- >OCSTCBMsg = nsgQ; (10)
#el se
nsg = sg;
#endi f
pt cb- >CSTCBSt at &= ~nsk; (112)
if (ptcb->CSTCBStat == 08 _STAT _RDY) { (12)
OSRdy G p |= bity; (13)
OSRdy Thl [ y] |= bitx;
}
}
Listing 6.6, Making a task ready-to-run.
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Figure 6-4, Making atask ready-to-run.




6.03 Making a task wait for an event, OSEventTaskWait()

Listing 6.7 showsthecodefor OSEvent TaskWai t () . Thisfunctioniscalled byOSSenPend() ,OSMooxPend()
and OSQPend() when atask must wait on an ECB. In other words, OSEvent TaskWai t () removesthe current
task from the ready list and places thistask in the wait list of the ECB.

void OBEvent TaskWait (OS_EVENT *pevent)

{
OSTCBCQuUr - >OSTCBEvent Ptr = pevent; (1)
i f ((CSRdyTbl [ OSTCBCur - >OSTCBY] &= ~OSTCBCur - >CSTCBBi t X) == 0) { (2)

OSRdyG p &= ~OSTCBCur- >CSTCBBi t Y;

}
pevent - >CSEvent Thl [ OSTCBCur - >OSTCBY] | = OSTCBCur- >OSTCBBI t X; (3)
pevent - >CSEvent G p | = OSTCBCur- >0OSTCBBI t Y;

}

Listing 6.7, Making atask wait on an ECB.

The pointer to the ECB is placed in the task’s TCB to link the task to the event control block L6.7(1). Next, thetask is
removed from theready list L6.7(2) and placed in the wait list for the ECB L6.7(3).

6.04 Making a task ready because of a timeout, OSEventTO()
Listing 6.8 shows the code for OSEvent TQ() . This function is called by OSSenPend() , OSMboxPend() and
OSQPend() when atask has been made ready-to-run by OSTi meTi ck() which means that the ECB was not

signaled within the specified timeout period. In this case, we must remove the task from the wait list of the ECB
L6.8(1) and mark thetask asbeing ready L6.8(2). Finally, thelink to the ECB isremoved from thetask’s TCB L 6.8(3).
Y ou should note that OSEvent TQ( ) isalso called with interrupts disabled.

void OSEvent TO (OS_EVENT *pevent)

{

i f ((pevent->0SEvent Tbl [ OSTCBCur - >OSTCBY] & ~OSTCBQur - >OSTCBBi t X) == 0) { (1)

pevent - >CSEvent G p &= ~OSTCBCur - >CSTCBBI t Y;

OSTCBQuUr - >0STCBS at = OS_STAT_RDY; (2)

OSTCBQUr - >OSTCBEvent Ptr = (CS_EVENT *)O0; (3)
}

Listing 6.8, Making a task ready because of a timeout.

6.05 Semaphores

mMC/OSH I'ssemaphores consi st of two elements: a16-bit unsigned i nteger used to hol d the semaphore count (0..65535),

and alist of taskswaiting for the semaphore count to begreater than 0. To enablep C/OS-11’s semaphore services, you
must set the configuration constant OS_SEM ENto 1 (seefile OS_CFG. H).

A semaphore needs to be created before it can be used. Creating a semaphore is accomplished by calling

OSSenCr eat e() (see next section) and specifying the initial count of the semaphore. The initial value of a
semaphore can be between 0 and 65535. If you use the semaphore to signal the occurrence of one or more events
then you would typically initialize the semaphore to 0. If you use the semaphore to access a shared resource then you
would initialize the semaphore to 1 (i.e. use it as a binary semaphore). Finally, if the semaphore allows your
applicationto obtainany oneof ‘n’ identical resourcesthen, youwouldinitializethe semaphoreto‘n’. The semaphore
would then be used as acounting semaphore.




M C/OSH| provides five services to access semaphores: OSSenCr eat e(), OSSenPend(), OSSenPost (),
OSSemAccept () and OSSenmQuer y() . Figure 65 shows a flow diagram to illustrate the relationship between
tasks, |ISRs and a semaphore. Note that the symb ology used to represent a semaphoreiseither a‘key’ ora‘flag’. You

would use a ‘key’ symbol if the semaphore was used to access shared resources. The ‘N’ next to the key represents
how many resources are available for the resource. ‘N’ would be 1 for a binary semaphore. Y ou would use a* flag’

symbol when asemaphoreis used to signal the occurrence of an event. ‘N’ in this case represents the number of times
the event can be signaled. Asyou can seefrom figure 6-5, atask or an ISR can call OSSenPost () . However, only

tasks are allowed to call OSSenPend() and OSSemQuer y() .

OSSenCreat e()

OSSe mPost (

OSSenPend()
OSSemAccept ()
OSSemQuery() >

ISR OSSenPost ()
OSSemAccept () N

Figure 65, Relationship between tasks, | SRs and a semaphore.

6.05.01 Creating a Semaphore, OSSemCreate()

The codeto create a semaphoreis showninlisting 6.9. OSSenCr eat e() starts by obtaining an ECB from the free
list of ECBs (seefigure 6-3) L6.9(1). Thelinked list of free ECBsis adjusted to point to the next free ECB L6.9(2). If
there was an ECB available L6.9(3), the ECB typeisset toOS_EVENT_TYPE_SEML6.9(4). Other OSSen®???()
function calls will check this field to make sure that the ECB is of the proper type. This prevents you from calling
OSSenPost () onan ECB that was created for use as a message mailbox (see section 6.06). Next the desired initial
count for the semaphore is stored in the ECB L6.9(5). The wait list is then initialized by calling
OSEvent Wi t Li st nit() (seesection6.01, Initializing an ECB, OSEventWaitListInit()) L6.9(6). Because the
semaphore is being initialized, there are no tasks waiting for it. Finally, OSSentCr eat e() returns a pointer to the
ECB L6.9(7). This pointer MUST be used in subsequent calls to manipulate semaphores OSSenPend(),
OSSenPost () ,0SSemAccept () andOSSemQuer y() ). Thepointerisbasically used asthe semaphore’s handle.
If there were no more ECBs, OSSentCr eat e() would have returned aNULL pointer.

Y ou should note that once a semaphore has been created, it cannot be deleted. In other words, there is no way in
p C/OSH | to return an ECB back to the freelist of ECBs. It would be ‘dangerous’ to delete a semaphore object if tasks
were waiting on the semaphore and/or relying on the presence of the semaphore. What would those tasks do?

OS EVENT *CSSentCreate (I NT16U cnt)
{
OS EVENT *pevent ;

CS ENTER CRI Tl CAL();
pevent = OSEvent Freeli st; (1)




if (OSEventFreeList != (05 EVENT *)0) { _ (2)
CSEvent FreeLi st = (OS_EVENT *) OSEvent Freeli st - >OSEvent Ptr;

}

CS EXIT_CRITI CAL() ;

if (pevent != (CS_EVENT *)0) { (3)
pevent - >CSEvent Type = OS_EVENT_TYPE_SEM (4)
pevent ->C8EventCnt = cnt; (5)
OSEvent Wi t Li st nit(pevent); (6)

return (pevent); (7)

Listing 6.9, Creating a semaphore.

6.05.02 Waiting on a Semaphore, OSSemPend()

The code to wait on a semaphore is shown in listing 6.10. OSSenPend() starts by checking that the ECB being
pointed to bypevent hasbeen created by OSSentCr eat e() L6.10(1). If the semaphoreisavailable (its count is
non-zero) L6.10(2) then the count is decremented L6.10(3), and the function return to its caller with an error code

indicating success. Obviously, if you want the semaphore, thisisthe outcome you arelooking for. Thisalso happens
to be the fastest path through OSSenPend() .

If the semaphoreisnot available (the count iszero) then we check to seeif the function wascalled by an ISR L6.10(4).
Under normal circumstances, you should not callOSSermPend() from an ISR because an I SR cannot be madeto wait.
| decided to add this check just in case. However, if the semaphore isin fact available, the call to OSSemPend()

would be successful even if called by an ISR!

If the semaphore count is zero and OSSenPend() was not called by an | SR then the calling task needs to be put to
sleep until another task (or an ISR) signals the semaphore (see the next section). OSSenPend() allowsyou to
specify atimeout valueasoneof itsarguments(i.e.t i meout ). Thisfeatureisuseful to avoid waiting indefinitely for
the semaphore. If the value passed is non-zero, then OSSenPend() will suspend the task until the semaphore is
signaled or the specified timeout period expires. Notethat at i meout valueof O indicates that the task iswilling to
wait forever for the semaphore to be signaled. To put the calling task to sleep, OSSenPend( ) setsthestatusflagin
the task’s TCB (Task Control Block) to indicate that the task is suspended waiting for a semaphore L6.10(5). The
timeout isalso stored in the TCB L6.10(6) so that it can be decremented by OSTi meTi ck() . You should recall (see
section 3.10, Clock Tick) that OSTi meTi ck() decrements each of the created task’s . OSTCBDI y field if it's
non-zero. The actual work of putting the task to sleep is done by OSEvent TaskWai t () (see section 6.03, Making

atask wait for an event, OSEventTaskWait()) L6.10(7).

Because the calling task is no longer ready-to-run, the scheduler is called to run the next highest priority task that is
ready-to-run L6.10(8). When the semaphore is signaled (or the timeout period expired) and the task that called
OSSenPend() isagainthehighest priority task thenOSSched( ) returns. OSSemPend( ) then checksto seeif the
TCB's status flag is still set to indicate that the task is waiting for the semaphore L6.10(9). If thetask isstill waiting
for the semaphore then it must not have been signaled by an OSSenPost () call. Indeed, the task must have be
readied by OSTi meTi ck() indicating that the timeout period has expired. In thiscase, the task isremoved from the
wait list for the semaphore by callingOSEvent TQ() L6.10(10), and an error code isreturned to the task that called
OSSenPend() to indicate that a timeout occurred. If the status flag in the task’s TCB doesn't have the
OS_STAT_SEMbit set then the semaphore must have been signaled and the task that calledOSSemPend( ) cannow
conclude that it has the semaphore. Also, thelink to the ECB isremoved L6.10(11).

voi d C8SenPend (OS_EVENT *pevent, |INT16U timeout, |NT8U *err)

OS_ENTER CRI Tl CAL() ;
if (pevent->CSEvent Type != OGS EVENT TYPE SEM { (1)
0S EXI T_CRITI CAL();




*err = OS ERR EVENT TYPE;

i f (pevent->CSEventCnt > 0) { (2)
pevent - >CSEvent Ont - - ; (3)
OS_EXIT_CRITI CAL();

*err = OS_NO ERR

} else if (C8lntNesting > 0) { (4)
OS_EXIT_CRITI CAL();

*err = OS_ERR PEND | SR,

} else {

OSTCBCur - >OSTCBSt at | = OS_STAT_SEM (5)

OSTCBCur - >OSTCBD y = timeout; (6)

CSEvent TaskWi t (pevent) ; (7)

O5_EXIT_CRITI CAL() ;

G8Sched() ; (8)

OS_ENTER _CRI Tl CAL() ;

i f (OSTCBCur->0OSTCBStat & OS_STAT_SEM { (9)
OSEvent TQ( pevent ) ; (10)
Cs_EXI T_CRI Tl CAL() ;

*err = OS_TI MEQUT;

} else {

OSTCBCur- >OSTCBEvent Ptr = ( OS_EVENT *)0; (11)

08 EXIT_CRITI CAL();
*err = OS_NO ERR

Listing 6.10, Waiting for a ssmaphore.

6.05.03 Signaling a Semaphore, OSSemPost()

The code to signal a semaphore is shown in listing 6.11. OSSenPost () starts by checking that the ECB being
pointed to by pevent has been created by OSSentCr eat e() L6.11(1). Next, we check to see if any tasks are
waiting on the semaphore L6.11(2). There are tasks waiting when the OSEvent Gr p field in the ECB contains a
non-zero value. The highest priority task waiting for the semaphore will be removed from the wait list by
OSEvent TaskRdy() (see section 6.02, Making a task ready, OSEventTaskRdy()) L6.11(3) and this task will be
made ready-to-run. OSSched() is then called to see if the task made ready is now the highest priority task
ready-to-run. If itis, acontext switch will result (only if OSSemPost () iscalled from atask) and the readied task
will be executed. If the readied task is not the highest priority task then OSSched() will return and the task that
called OSSernPost () will continueexecution. If therewereno taskswaiting on the semaphore, the semaphore count
simply getsincremented L6.11(5).

Y ou should note that a context switch does not occur if OSSenPost () iscalled by an | SR because context switching
froman ISR can only occurswhenOSI nt Exi t () iscalled at thecompletion of the SR from thelast nested | SR (see

section 3.09, Interrupts under p C/OSHI).

I NTBU OSSenPost (OS_EVENT *pevent)
{
OS_ENTER _CRI Tl CAL() ;
i f (pevent->CSEvent Type != OGS EVENT _TYPE SEM { (1)
S EXIT_CRITI CAL();
return (OS_ERR EVENT_TYPE);

}

i f (pevent->CSEvent G p) { (2)
OSEvent TaskRdy(pevent, (void *)0, OS _STAT_SEM; (3)
S EXIT_CRITI CAL();
OSSched() ; (4)




return (GS NO ERR);
} else {

i f (pevent->0SEventOnt < 65535) {
pevent - >CSEvent Cnt ++; (5)
OS5 _EXI T_CRI Tl CAL() ;
return (OS_NO ERR);
} else {
OS5 _EXI T_CRI Tl CAL() ;
return (OS_SEM OVF);

Listing 6.11, Signaling a semaphore.

6.05.04 Getting a Semaphore without waiting, OSSemAccept()

It is possible to obtain a semaphore without putting a task to sleep if the semaphore is not available. This is
accomplished by callingOSSemAccept () and the codefor thisfunctionisshowninlisting 6.12. OSSemAccept ()
starts by checking that the ECB being pointed to by pevent has been created by OSSenCr eat e() L6.12(1).
OSSemAccept () then getsthe current semaphore count L6.12(2) to determine whether the semaphoreis available
(i.e. non-zero value indicates available) L6.12(3). The count is decremented only if the semaphore was available
L6.12(4). Finaly, the origina count of the semaphore is returned to the caller L6.12(5). The code that called

OSSemAccept () will need to examine the returned value. A returned value of zero indicates that the semaphore
was not available while anon-zero value indicates that the semaphore was available. Furthermore, a non-zero value
indicates to the caller the number of resources that was available. Keep in mind that in this case, one of the resources
has been allocated to the calling task because the count has been decremented. An ISR should useOSSemAccept ()

instead of OSSenPend() .

I NT16U OSSenAccept (OS EVENT *pevent)

{
| NT16U cnt ;
OS_ENTER CRI Tl CAL() ;
i f (pevent->CSEvent Type != OS EVENT_TYPE SEM { (1)
CS_EXI T_CRI Tl CAL() ;
return (0);
}
cnt = pevent->CSEvent Ont ; (2)
if (cnt > 0) { (3)
pevent - >C8Event Ont - - ; (4)
}
OS EXIT_CRITICAL();
return (cnt); (5)
}

Listing 6.12, Getting a semaphor e without waiting.

6.05.05 Obtaining the status of a semaphore, OSSemQuery()

OSSenuer y() allowsyour application to take a‘snapshot’ of an ECB that is used as a semaphore. The code for
thisfunctionisshowninlisting 6.13. OSSenQuer y() ispassed two arguments: pevent containsa pointer to the
semaphore which is returned by OSSenCr eat e() when the semaphoreis created and, pdat a which is a pointer to
a data structure OS_SEM DATA, see uCOS_I | . H) that will hold information about the semaphore. Your




application will thus need to allocate avariable of typeOS_SEM DATA that will be used to receive the information
about the desired semaphore. | decided to use anew data structure because the caller should only be concerned with
semaphore specific data as opposed to the more generic OS_EVENT data structure which contain two additional fields
(i.e.. OSEvent Type and. OSEvent Pt r). OS_SEM_ DATA contains the current semaphore count (. OSCnt ) and
the list of tasks waiting on the semaphore (. OSEvent Tbhl [ ] and. OSEvent Gr p).

Asaways, our function checksthat pevent pointsto an ECB containing a semaphore L6.13(1). OSSenQuer y()
then copiesthe wait list L6.13(2) followed by the current semaphore count L6.13(3) from the OS_EVENT structureto
the OS_SEM DATAstructure.

I NTBU CsSenmfuery (OS_EVENT *pevent, OS_SEM DATA *pdat a)

{
INT8U i ;
I NT8U *psrc;
I NT8U *pdest ;
OS_ENTER CRI Tl CAL() ;
i f (pevent->CSEvent Type != OS_EVENT_TYPE_SEM { (1)
OS_EXI T_CRI Tl CAL() ;
return (OS5 _ERR EVENT _TYPE);
}
pdat a- >OSEvent G’ p = pevent - >CSEvent G p; (2)
psrc = &pevent - >CSEvent Tbl [ 0] ;
pdest = &pdat a- >CSEvent Thl [ 0] ;
for (i = 0; i < OS EVENT_TBL_SIZE; i++) {
*pdest ++ = *psrc++;
}
pdat a- >CsOnt = pevent - >CSEvent Cnt ; (3)
CS EXIT_CRITICAL();
return (OS_NO ERR);
}

Listing 6.13, Obtaining the status of a semaphore.

6.06 Message Mailboxes

A message mailbox (or simply a mailbox) is a mC/OS-I1 object that allows a task or an ISR to send a pointer size
variable to another task. The pointer would typically beinitialized to point to some application specific data structure

containing a ‘message’. To enable u C/OS-11’s message mailbox services, you must set the configuration constant
OS_MBOX_ENTto 1 (seefileOS_CFG. H).

A mailbox needs to be created before it can be used. Creating a mailbox is accomplished by calling
OSMhoxCr eat e() (seenext section) and specifying theinitial value of the pointer. Typically, theinitia valueisa
NULL pointer but a mailbox can initially contain a message. |If you use the mailbox to signal the occurrence of an
event (i.e. send a message) then you would typically initialize it to a NULL pointer because the event (most likely)
would not have occurred. If you use the mailbox to access a shared resource then you would initialize the mailbox
with anon-NULL pointer. In this case, you would basically use the mailbox as abinary semaphore.

p C/OSH | provides five services to access mailboxes: OSMboxCr eat e() , OSMboxPend() , OSMboxPost (),
OSMhoxAccept () andOSMboxQuer y() . Figure 6-6 shows aflow diagram to illustrate the relationship between
tasks, | SRsand amessage mailbox. Notethat the symbology used to represent amailbox isan | -beam. The content of
the mailbox is a pointer to amessage. What the pointer pointsto is application specific. A mailbox can only contain
one pointer (mailbox isfull) or apointer toNULL (mailbox isempty). Asyou canseefromfigure6-6,ataskoran ISR
can call OSMboxPost (). However, only tasks are allowed to call OSMboxPend() and OSvboxQuery().




OSMhoxCreat e()

OSMhoxPost () l
OSMboxPend()
OSIVboxAccept
J _OSMhoxQuery()
ISR man%
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Figure 66, Relationship between tasks, | SRs and a message mailbox.

6.06.01 Creating a Mailbox, OSMboxCreate()

The code to create a mailbox is shown in listing 6.14 and is basically identical to OSSenTCr eat e() except that the
ECB typeis set to OS_EVENT_TYPE_MBOX L6.14(1) and, instead of using the . OSEvent Cnt field, we use
the. OSEvent Pt r field to hold the message pointer L6.14(2).

OSMboxCr eat e() returnsapointer to the ECB L6.14(3). This pointer MUST be used in subsequent calls to access

the mailbox OSMboxPend(), OSMboxPost (), OSMboxAccept () and OSMboxQuer y() ). The pointer is
basically used as the mailbox handle. Note that if there were no more ECBs, OSMboxCr eat e() would have

returned aNULL pointer.

Y ou should note that once a mailbox has been created, it cannot be deleted. It would be ‘dangerous’ to delete a
message mailbox object if tasks were waiting on the mail box.

C5_EVENT *OSMooxCreate (void *msgQ)

{
OCS_EVENT *pevent;
OS5 _ENTER CRI Tl CAL() ;
pevent = CSEvent FreelLi st;
if (OSEventFreeList != (OS5_EVENT *)0) ({
CSEvent FreeLi st = (OS_EVENT *) OSEvent Freeli st - >OSEvent Ptr;
}
OS_EXI T_CRITI CAL() ;
if (pevent != (OS_EVENT *)0) {
pevent - >C8Event Type = OS_EVENT_TYPE MBOX; (1)
pevent ->CSEvent Ptr = nsg; (2)
OCSEvent Wi t Li st nit(pevent);
return (pevent); (3)
}

Listing 6.14, Creating a mailbox.




6.06.02 Waiting for a message at a Mailbox, OSMboxPend()

The code to wait for a message to arrive at a mailbox is shown in listing 6.15. Again, the code is very similar to
0SSenPend() sol will only discuss the differences. OSMboxPend() verifies that the ECB being pointed to by
pevent has been created by OSMboxCr eat e() L6.15(1). A messageis available when. OSEvent Pt r contains
anon-NULL pointer L6.15(2). In this case, OSMboxPend() storesthe pointer to the message in ms g and places a
NULL-pointer in. OSEvent Pt r toempty themailbox L6.15(3). Again, thisisthe outcomeyou arelooking for. This
also happensto be the fastest path throughOSMboxPend() .

If amessageisnot available (. OSEvent Pt r contains a NUL L-pointer), we check to seeif the function was called by
an ISR L6.15(4). AswithOSSenPend() , you should not call OSMboxPend() from an ISR because an I SR cannot
be madetowait. Again, | decided to add this check just in case. However, if the messageisin fact available, the call
to OSMboxPend() would be successful even if called from an ISR!

If amessage is not available then the calling task must be suspended until either amessage is posted or the specified
timeout period expires L6.15(5). When amessage is posted to the mailbox (or the timeout period expires) and the task
that called OSMboxPend( ) isagain the highest priority task then OSSched( ) returns. OSVboxPend() checksto
seeif amessage was placed in thetask’s TCB by OSVboxPost () L6.15(6). If thisisthe case, the call is successful
and the message is returned to the caller. Note that we again need to clear the mailbox’s content by placing a
NULL-pointer in. OSEvent Ptr .

A timeout is detected by looking at the . OSTCBSt at fieldinthetask’s TCB to seeif theOS_STAT_MBOX hit is still
set. A timeout occurred when the bit is set L6.15(7). The task is removed from the mailbox’s wait list by calling
OSEvent TQ() L6.15(8). Note that the returned pointer isset to NULL L6.15(9) because there was no message. If
the status flag in the task’s TCB doesn’'t have theOS_STAT_MBOX bit set then a message must have been sent. The
task that called OSMooxPend() will thus receive the pointer to the message L6.15(10). Ako, thelink to the ECB is
removed L6.15(11).

voi d *OsMWhoxPend (OS_EVENT *pevent, |NT16U tinmeout, |NT8U *err)
{

void *nsg;

OS_ENTER CRI Tl CAL() ;
i f (pevent->CSEvent Type ! = OS5 _EVENT_TYPE MBOX) { (1)
CS EXIT_CRITI CAL();
*err = OS_ERR EVENT_TYPE;
return ((void *)0);
}
nsg = pevent->CSEvent Ptr;
if (msg !'= (void *)0) { (2)
pevent ->0CSEvent Ptr = (void *)O0; (3)
OS_EXI T_CRI Tl CAL() ;
*err = OS5 NO ERR;
} else if (CSIntNesting > 0) { (4)
OGS EXIT CRITI CAL();
*err = OS_ERR PEND | SR,
} else {
OSTCBCur- >0OSTCBSt at | = OS_STAT_MBOX; (5)
OSTCBCur - >CSTCBD y = timeout;
COSEvent TaskWai t ( pevent) ;
OGS EXIT_CRITI CAL();
GsSched() ;
OS_ENTER _CRI Tl CAL() ;
if ((nmsg = OSTCBCur->0STCBMsg) != (void *)0) { (6)
OSTCBCur - >CSTCBMs g = (void *)O0;
OSTCBCur - >CSTCBSt at OS_STAT_RDY;
OSTCBCur - >OSTCBEvent Pt r (OS_EVENT *)0;
s EXIT_CRI Tl CAL() ;




*err = OS NO ERR;

} else if (OBTCBCur->CSTCBStat & OS5 STAT _MBOX) { (7)
CSEvent TQ( pevent ) ; (8)
CS EXIT_CRITI CAL() ;
nsg = (void *)O0; (9)
*err = OS_TI MEQUT;

} else {
nmsg = pevent - >CSEvent Ptr; (10)
pevent - >CSEvent Pt r = (void *)O0;
OSTCBCur- >OSTCBEvent Ptr = (OS_EVENT *)O0; (11)
OS5 _EXI T_CRI Tl CAL() ;
*err = 0S_NO ERR

}

return (nsg);

Listing 6.15, Waiting for a message to arrive at a mailbox.

6.06.03 Sending a message to a mailbox, OSMboxPost()

The code to deposit a message in a mailbox is shown in listing 6.16. After making sure that the ECB is used as a
mailbox L6.16(1), OSMboxPost () checks to see if any task is waiting for a message to arrive at the mailbox
L6.16(2). There are tasks waiting when the OSEvent G p field in the ECB contains a non-zero value. The highest
priority task waiting for the message will be removed from the wait list by OSEvent TaskRdy() (see section 6.02,
Making a task ready, OSEventTaskRdy()) L6.16(3), and this task will be made ready-to-run. OSSched() isthen
called to seeif the task made ready is now the highest priority task ready-to-run. If itis, a context switch will result
(only if OSMboxPost () is called from atask) and the readied task will be executed. If the readied task is not the
highest priority task thenOSSched( ) will return and the task that called OSVboxPost () will continue execution.

If there were no tasks waiting for a message to arrive at the mailbox, then the pointer to the message is saved in the
mailbox L6.16(6), assuming there isn’t already a non-NULL pointer L6.16(5). Storing the pointer in the mailbox

allowsthe next task to call OSMboxPend() toimmediately get the message.

You should note that a context switch does not occur if OSMboxPost () is called by an ISR because context
switching from an ISR can only occurswhen OSI nt Exi t () iscaled at the completion of the ISR, and from the last
nested | SR (see section 3.09, Interrupts under p C/OS-1).

I NTBU CSMhoxPost (0S8 _EVENT *pevent, void *nsg)

{
OS_ENTER CRI TI CAL() ;

i f (pevent->CSEvent Type ! = G5 EVENT TYPE MBOX) { (1)
OS EXIT_CRITI CAL() ;
return (OS5 _ERR EVENT_TYPE);

%f (pevent ->CSEvent G p) { (2)
OSEvent TaskRdy( pevent, nsg, OS STAT MBOX); (3)
OS EXIT_CRITICAL();
OSSched() ; (4)
return (CS_NO ERR);

} else {
i f (pevent->0SEventPtr != (void *)0) { (5)

08 EXI T_CRI TI CAL() ;
return (OS_MBOX FULL);
} else {
pevent - >CSEvent Ptr = nsg; (6)
OS_EXI T_CRI TI CAL() ;
return (OS_NO ERR);




Listing 6.16, Depositing a message in a mailbox.

6.06.04 Getting a message without waiting, OSM boxAccept()

It is possible to obtain a message from a mailbox without putting a task to sleep if the mailbox is empty. Thisis
accomplished by calling OSWMboxAccept () and the code for this function is shown in listing 6.17.
OSMhoxAccept () starts by checking that the ECB being pointed to by pevent has been created by
OSMboxCr eat e() L6.17(1). OSMooxAccept () then getsthe current contents of the mailbox L6.17(2) in order
to determine whether a message is available (i.e. non-NULL pointer) L6.17(3). If amessage is available, the mailbox
is emptied L6.17(4). Finally, the original contents of the mailbox is returned to the caller L6.17(5). The code that
called OSMboxAccept () will need to examine the returned value. If OSMboxAccept () returns aNULL pointer
then a message was not available. A non-NULL pointer indicates that a message was deposited in the mailbox. An
ISR should use OSMboxAccept () instead of OSMboxPend() .

Y ou can use OSMooxAccept () to ‘flush’ the contents of amailbox.

voi d *CsWhoxAccept (OS_EVENT *pevent)

{
void *nsg;
OS_ENTER CRI Tl CAL() ;
i f (pevent->0SEvent Type != OS5 EVENT _TYPE MBOX) { (1)
OS_EXIT_CRITI CAL() ;
return ((void *)0);
nsg = pevent- >CSEvent Ptr; (2)
if (nsg !'= (void *)0) { (3)
pevent ->0CSEvent Ptr = (void *)O0; (4)
}
OS EXIT_CRITICAL();
return (nsg); (5)
}

Listing 6.17, Getting a message without waiting.

6.06.05 Obtaining the status of a mailbox, OSMboxQuery()

OSMboxQuer y() alowsyour application to take a‘snapshot’ of an ECB used for a message mailbox. The code for
thisfunctionisshowninlisting 6.18. OSMboxQuer y() ispassed two arguments: pevent containsa pointer to the
message mailbox which is returned by OSMboxCr eat e() when the mailbox is created and, pdat a which is a
pointer toadatastructure (OS_MBOX_DATA, seeuCOS_| | . H) that will hold information about the message mailbox.
Your application will thus need to allocate a variable of type OS_MBOX_DATA that will be used to receive the
information about the desired mailbox. | decided to use a new data structure because the caller should only be
concerned with mailbox specific data as opposed to the nore generic OS_EVENT data structure which contain two
additional fields (i.e.. OSEvent Cnt and. OSEvent Type). OS_MBOX_DATA contains the current contents of the
message (i.e.. OSMsg) and thelist of taskswaiting for amessageto arrive(. OSEvent Tbl [ ] and. OSEvent G p).




As always, our function checks that pevent pointsto an ECB containing a mailbox L6.18(1). OSMboxQuery()
then copies the wait list L6.18(2) followed by the current message L6.18(3) from the OS_EVENT structure to the
OS_MBOX_DATA structure.

| NTBU CSMhoxQuery (OGS EVENT *pevent, OS MBOX DATA *pdat a)

{
INT8U i;
I NT8U *psrc;
I NT8U *pdest ;
OS_ENTER CRI Tl CAL() ;
i f (pevent->CSEvent Type != OGS EVENT TYPE MBOX) { (1)
CS EXIT_CRITI CAL();
return (OS_ERR EVENT TYPE);
Ldat a- >CSEvent G p = pevent - >CSEvent G p; (2)
psrc = &pevent - >CSEvent Thl [ 0] ;
pdest = &pdat a- >CSEvent Thl [ 0] ;
for (i =0; i < OS EVENT_TBL_SIZE; i++) {
*pdest ++ = *psrc++;
}
pdat a- >OSMsg = pevent - >CSEvent Ptr ; (3)
OS_EXI T_CRITI CAL() ;
return (OS_NO ERR);
}

Listing 6.18, Obtaining the status of a mailbox.

6.06.06 Using a mailbox as a binary semaphore

A message mailbox can be used as abinary semaphore by initializing the mailbox with anon-NULL pointer (( voi d
*1) workswell). A task requesting the ‘semaphore’ would call OSMboxPend() and would release the ‘semaphore’
by calling OSMboxPost (). Listing 6.19 shows how this works. Y ou would use this technique to conserve code
spaceif your application only needed binary semaphores and mailboxes. In thiscase, you could setOS_SEM ENto0
and only use mailboxesinstead of both mailboxes and semaphores.

OS_EVENT *MooxSem

voi d Taskl (void *pdat a)

{ I NT8U err;
for (5;) {
OSMboxPend( MooxSem 0, &err); /* Obtain access to resource(s) */
. /* Task has semaphore, access resource(s) &/
CSNooxPost(NboxSem (void )1); /* Release access to resource(s) */
: }

Listing 6.19, Using a mailbox as a binary semaphore,




6.06.07 Using a mailbox instead of OSTimeDIy()

Thetimeout feature of amailbox can be used to simulateacall toOSTi meDl y() . Asshowninlisting6.20,Task1()
resumes execution after the time period expired if no message is received within the specified TI MEQUT period. This
isbasically identical toOSTi meDl y( TI MEOQUT) . However, the task can be resumed by Task2() when Task( 2)

post a ‘dummy’ message to the mailbox before the timeout expires. This is the same as calling
OSTi meDl yResune() had Task1() caled OSTi neDl y() . You should note that the returned message is

ignored because we are not actually looking to get a message from another task or an ISR.

OS _EVENT *MooxTi neDl y;
voi d Taskl (void *pdata)
{

I NT8U err;

for (5;) {
OSMboxPend( MooxTi neDl y, TI MEQUT, &err); [* Del ay task */

/* Code executed after time del ay */

voi d Task2 (voi d *pdat a)

I NT8U err;
for (5;) {
OSMboxPost (MoxTi neDl y, (void *)1); /* Cancel delay for Taskl */
}
}
Listing 6.20, Using a mailbox as atime delay.
6.07 Message Queues

A message queue (or simply a queue) isanC/OS-11 object that allows atask or an ISR to send pointer size variablesto
another task. Each pointer would typically beinitialized to point to some application specific datastructure containing
a‘message’. To enable p C/OS-I’s message queue services, you must set the configuration constantOS_Q ENto 1
(see file OS_CFG. H) and determine how many message queues i C/OS-Il will need to support by setting the
configuration constant OS_MAX_QS, also found inOS_CFG. H.

A queue needs to be created before it can be used. Creating aqueue is accomplished by calling OSQCr eat e() (see
next section) and specifying the number of entries (i.e. pointers) that a queue can hold.

pC/OSHI provides seven services to access messgye queues. OSQCr eat e(), OSQPend(), OSQPost (),
OSQPost Front (), OSQAccept (), OSQFI ush() and OSQQuery() . Figure 67 shows a flow diagram to
illustrate the relationship between tasks, ISRs and a message queue. Note that the symbology used to represent a
gueue looks like amailbox with multiple entries. Infact, you can think of a queue as an array of mailboxes except that
there is only one wait list associated with the queue. Again, what the pointers point to is application specific. ‘N




representsthe nurrber of entriesthat the queue holds. The queueisfull when your application has calledOSQPost ()
(or OSQPost Front () ) “N’ times before your application has called OSQPend() or OSQAccept (). Asyou can

see from figure 6-7, atask or an ISR can call OSQPost () , OSQPost Front (), OSQFI ush() or OSQAccept ().
However, only tasks task are allowed to call OSQPend() and OSQQuer y() .

OSQCr eat e()

OSQPost ()
OSQPost Front ()

OSQFIl ush()
\ OSQPend()
OSQAccept ()
OSQQuer y() |

ISR 0sQPost () Queue
OSQPost Front () Message
OSQF! ush()
OSQAccept ()

Z <

»

Figure6-7, Relationship between tasks, | SRs and a message queue.

Figure 6-8 shows the different data structures needed to implement amessage queue. An ECB isrequired because we

need await list F6-8(1) and using an ECB allows us to use some of the same code as we used with semaphores and
mailboxes. When a message queue is created, a queue control block (i.e. an G5_Q, see OS_Q C) is allocated and

linked to the ECB using the. OSEvent Pt r field in OS_EVENT, F6-8(2). Before you create a queue, however, you
need to allocate an array of pointer F6-8(3) which contains the desired number of queue entries. In other words, the

number of elementsin the array correspondsto the number of entriesin the queue. The starting address of the array is
passed to OSQCr eat e() asan argument aswell as the size (in number of elements) of the array. In fact, you don’t

actually need t 0 use an array aslong as the memory occupies contiguous |locations.
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Figure 68, Data structures used in a message queue.

The configuration constant OS_ MAX_QS inOS_CFG. Hspecifies how many queues you are allowed to have in your

application and MUST be set to at least 2. When u C/OS-1l isinitialized, alist of free queue control blocksis created
as shown in figure 6-9.
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Figure 69, List of free queue control blocks.

A queue control block is adata structure that is used to maintain information about the queue and it contains the fields

described below. Note that the fields are preceded with adot to show that they are members of a structure as opposed
to simplevariables.

. OSQPt r is used to link queue control blocks in the list of free queue control blocks. Once the queue is
allocated, thisfield is not used.

. OSQSt art contains a pointer to the start of the message queue storage area. Y our application must declare
this storage area before creating the queue.

. OSQENd is a pointer to one location past the end of the queue. This pointer is used to make the queue a
circular buffer.

. OSQ n isapointer to the location in the queue where the next message will be inserted. .OSQ n is adjusted
back to the beginning of the message storage areawhen. OSQ n equals. OSQENd.

. OSQQut isapointer to the next message to be extracted from the queue. . OSQQCut is adjusted back to the

beginning of the message storage areawhen. OSQQut equals .OSQEnd. . OSQQut isalso usedtoinserta
message (see OSQPost Front ()).

. OSQ@Si ze contains the size of the message storage area. The size of the queue is determined by your
application when the queue is created. Notethat p C/OS-I1 alows the queue to contain up to 65535 entries.

. OSQEnt ri es contains the current number of entries in the message queue. The queue is empty

when . OSQENt ri es is zero and full when it equals . OSQSi ze. The message queue is empty when the
queueis created.

A message queue isbasically acircular buffer as shown in figure 6-10. Each entry contains a pointer. The pointer to
the next message is deposited at the entry pointed to by . OSQ n F6-10(1) unless the queue is full
(i.e. .OSQENtries == .0OSQSi ze) F6-10(3). Depositing the pointer at .OSQIn implements a FIFO
(First-In-FirstOut) queue. We can implement a LIFO (Lastn-First-Out) queue by pointing to the entry
preceeding . OSQOuUt F6-10(2) and depositing the pointer at that location. The pointer is also considered full
when . OSQEntries == .OSQSi ze. Message pointers are always extracted from the entry pointed to
by . OSQQut. Thepointers. OSQSt art and . OSQENnd are simply markers used to establish the beginning and end
of the array so that . OSQ n and . OSQQut can wrap around to implement this circular motion.
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Figure6-10, Message queue isa circular buffer of pointers.

6.07.01 Creating a Queue, OSQCreate()

The code to create a message queueis shown inlisting 6.21. OSQCr eat e() requiresthat you allocate an array of
pointers that will hold themessage. The array MUST be declared as an array of pointerstovoi d.

OSQCr eat e() starts by obtaining an ECB from the free list of ECBs (see figure 6-3) L6.21(1). The linked list of
free ECBsis adjusted to point to the next free ECB L6.21(2). Other OSQ???( ) function callswill check thisfield to
make surethat the ECB isof the proper type. Thispreventsyoufrom callingOSQPost () onan ECB that wascreated
for use as a semaphore (see section 6.05). Next, OSQCr eat e() obtains a queue control block fromthe free list
L6-21(3). OSQCr eat e() initializes the gueue control block L6-21(4) (if one was available), sets the ECB type to
OS_EVENT_TYPE_Q L6.21(5) and makes .OSEventPtr point to the queue control block L6.21(6). The wait list is
initialized by calling OSEvent Wai t Li st ni t () (seesection 6.01, Initializing an ECB, OSEventWaitListInit())
L6.9(7). Becausethe queueisbeing initialized, there are no tasks waiting. Finaly, OSQCr eat e() returnsapointer
to the allocated ECB L6.21(9). This pointer MUST be used in subsequent calls that operate on message queues
(CsQPend( ), OSQPost (), OSQPost Front (), OSQFl ush(), CSQAccept () and OSQQuery()). The
pointer isbasically used as the queue’s handle. Note that if there were no more ECBs, OSQCr eat e() would have
returned aNULL pointer. If aqueue control block was not available, OSQCr eat e( ) returnsthe ECB back to thelist
of free ECBsL6.21(8) (thereisno point in wasting the ECB).

Y ou should note that once a message queue has been created, it cannot be deleted. 1t would be ‘dangerous’ to deletea
message queue object if tasks were waiting for messages fromiit.

OS EVENT *CSQCreate (void **start, |NT16U size)

OCS_EVENT *pevent;
G Q *pa;

OS_ENTER CRI Tl CAL() ;




pevent = OSEvent Freeli st ; (1)
if (CSEventFreeList != (OS_EVENT *)0) {
OSEvent FreeLi st = (OS_EVENT *) OSEvent FreeLi st - >OSEvent Ptr; (2)

}
OS5 _EXI T_CRITI CAL() ;
if (pevent != (OCS_EVENT *)0) {
OS_ENTER CRI TI CAL() ;
pg = OSQFreeli st ; (3)
if (OSQFreeList '= (05 Q*)0) {
OSQFr eeLi st = OBQFreeli st->08QPtr;

}
0S_EXI T_CRI Tl CAL() ;
if (pg !=(05.Q*)0) {

pg->0SQSt ar t = start; (4)

pg- >0SQEnd = &start[size];

pg->0SQ n = start;

pg->05QCut = start;

pg->0sQsi ze = si ze;

pg->0SQEntri es = 0;

pevent - >CSEvent Type = OS_EVENT_TYPE_Q (5)

pevent - >C8Event Ptr = pq; (6)

CSEvent Wi t Li st | nit (pevent); (7)
} else {

OS5_ENTER CRI Tl CAL();

pevent - >C8Event Ptr = (voi d *) OSEvent FreelLi st ; (8)

OSEvent Fr eeli st = pevent;

0S_EXI T_CRI Tl CAL() ;
pevent = (OS_EVENT *)O0;
}

return (pevent); (9)

Ligting 6.21, Creating a queue.

6.07.02 Waiting for a message at a Queue, OSQPend()

The code to wait for amessage to arrive at aqueueisshown in listing 6.22. OSQPend( ) verifiesthat the ECB being
pointed to bypevent has been created by OSQCr eat e() L6.22(1). A messageis availablewhen. OSQEntri es
isgreater than 0 L6.22(2). In thiscase, OSQPend() storesthe pointer to the message innsg, moves the. OSQQut

pointer sothat it pointsto the next entry inthe queue L 6.22(3) and, OSQPend( ) decrementsthe number of entriesleft
in the queue L6.22(4). Because we are implementing a circular buffer, we need to check that . OSQQut has not
moved past the last valid entry in the array L6.22(5). When this happens, however, . OSQQut is adjusted to point
back at the beginning of the array L6.22(6). Thisisthe path you are looking for when calling OSQPend() and it also
happens to be the fastest.

If amessageisnot available (. OSEvent Ent ri es is0) then we check to seeif the function was called by an ISR
L6.22(7). AswithOSSenmPend() and OSMboxPend() , you should not call OSQPend( ) from an ISR because an
ISR cannot be made to wait. However, if the messageisin fact available, the call toOSQPend() would be successful
evenif called from an ISR!

If amessage is not available then the calling task must be suspended until either amessage is posted or the specified
timeout period expires L6.22(8). When amessage is posted to the queue (or the timeout period expired) and the task
that called OSQPend() is again the highest priority task then OSSched() returns L6.22(9). OSQPend() then

checks to see if a message was placed in the task’s TCB by OSQPost () L6.22(10). If thisis the case, the cal is
successful, some cleanup work is done to unlink the message queue from the TCB L6.22(11) and the message is
returned to the caller L6.22(17).




A timeout is detected by looking at the. OSTCBSt at field inthetask’s TCB to seeif theOS_STAT_Qbit isstill set.

A timeout occurred when the bit is set L6.22(12). The task is removed from the queue's wait list by calling
OSEvent TO() L6.22(13). Note that the returned pointer is set to NULL L6.22(14) (no message was available).

If the status flag in the task’s TCB doesn’t have the OS_STAT_Qbit set then amessage must have been sent and thus,

the message is extracted from the queue L6.22(15). Also, the link to the ECB is removed because the task will no
longer wait on that message queue L6.22(16).

void *OsQ@Pend (OS_EVENT *pevent, |NT16U tineout, |NT8U *err)
{

void *nsg;

B Q *pg;

CS _ENTER CRI Tl CAL() ;

i f (pevent->0SEvent Type != OS5 EVENT _TYPE Q { (1)
OS_EXIT_CRITI CAL();
*err = OS ERR EVENT TYPE;
return ((void *)0);

}pq = pevent- >CSEvent Ptr;

if (pg->C8Entries !'=0) { (2)
msg = *pg- >0SQQut ++; (3)
pg->0SQENntri es--; (4)
if (pg->08QQut == pg->0SCEnd) { (5)

pg->0sQQut = pg->CsBtart ; (6)

}
S _EXIT_CRITI CAL() ;
*err = OS5 _NO ERR;
} else if (CSIntNesting > 0) { (7)
OGS EXIT_CRITI CAL();
*err = OS_ERR PEND | SR,

} else {
OSTCBCur - >OSTCBSt at | = OS_STAT_Q (8)
OSTCBCur - >OSTCBD y = timeout;

CSEvent TaskWai t (pevent) ;
OGS EXIT_CRITI CAL();

OsSched() ; (9)

OS_ENTER CRI Tl CAL() ;

if ((msg = OSTCBCur->0STCBMsg) != (void *)0) { (10)
OSTCBCur - >CSTCBMs g = (void *)O0;
OSTCBCur - >OSTCBSt at = OS_STAT_RDY;
OSTCBCur - >OSTCBEvent Ptr = (OS _EVENT *)0; (11)
s EXIT_CRI Tl CAL() ;
*err = OS_NO _ERR;

} else if (OSTCBCur->OSTCBStat & OS_STAT_Q { (12)
CSEvent TQ( pevent ) ; (13)
OS5 _EXI T_CRI Tl CAL() ;
nmsg = (void *)O0; (14)
*err = OS TI MEQUT,;

} else {
msg = *pg- >CBQQut ++; (15)
pg->C8QEntri es--;

if (pg->C8QQut == pg->CB8QENnd) {
pg- >C8QQut = pqg->CsCQst art ;

OSTCBCur - >CSTCBEvent Ptr = (OS_EVENT *)0; (16)
OS5 EXIT_CRITI CAL() ;
*err = OS_NO ERR




return (nsa); (17)

Listing 6.22, Waiting for a messageto arrive at a queue.

6.07.03 Sending a message to a queue (FIFO), OSQPost()

The code to deposit amessage in aqueueisshown in listing 6.23. After making sure that the ECB is used as a queue
L6.23(1), OSQPost () checksto seeif any task iswaiting for a message to arrive at the queue L6.23(2). There are
tasks waitingwhen the OSEvent Gr p field in the ECB contains a non-zero value. The highest priority task waiting
for the message will be removed from the wait list by OSEvent TaskRdy () (seesection 6.02, Making a task ready,
OSEventTaskRdy()) L6.23(3), and thistask will be made ready-to-run. OSSched( ) isthen called to seeif the task
made ready is now the highest priority task ready-to-run. If it is, a context switch will result (only if OSQPost () is
called from atask) and the readied task will be executed. If the readied task is not the highest priority task then
OSSched() will return and the task that called OSQPost () will continue execution. If there were no tasks waiting
for amessage to arrive at the queue, then the pointer to the message is saved in the queueL 6.23(5) unless the queueis
already full L6.23(4). You should notethat if the queueisfull, the message will not be inserted in the queue and thus,

the message will basically be lost. Storing the pointer to the message in the queue allows the next task that calls
OSQPend() (onthisqueue) toimmediately get the pointer.

Y ou should note that a context switch does not occur if OSQPost () iscalled by an I SR because context switching
from an ISR can only occurs when OSI nt Exi t () iscalled at the completion of the ISR, from the last nested ISR
(see section 3.09, Interrupts under p C/OS-1).

I NTBU OSQPost (OS_EVENT *pevent, void *nsg)

B . Q *pg;

0S_ENTER CRI Tl CAL() ;

i f (pevent->0SEvent Type != OS_EVENT TYPE Q { (1)
05 EXI T_CRI TI CAL() ;
return (OGS _ERR EVENT TYPE);

}

i f (pevent->C8Event G p) { (2)
OSEvent TaskRdy(pevent, nsg, OS STAT Q; (3)
0S_EXI T_CRI Tl CAL() ;

GsSched() ;
return (OS_NO ERR);

1} else {
pg = pevent->0SEvent Ptr;
if (pg->OSQ@Entries >= pg->08QSi ze) { (4)

OS_EXI T_CRI Tl CAL() ;
return (OS_Q FULL);
} else {
*pg- >05Q n++ = nsQ; (5)
pg->CSQENt ri es++;
if (pg->CS@ n == pg->CSQENnd) {
pg- >08Q n = pg->0SQSt art;

}os_EX| T _CRITI CAL();

}
return (CS_NO ERR);




Listing 6.23, Depositing a message in a queue (FIFO).

6.07.04 Sending a message to a queue (LI FO), OSQPostFront()

OSQPost Front () isbasicaly identical to OSQPost () except that OSQPost Fr ont () uses . OSQQut instead
of . OSQ n asthe pointer to the next entry to insert. The codeisshown inlisting 6.24. Y ou should note, however,
that . OSQQut points to an already inserted entry and thus, .OSQOut must be made to point to the previous entry.
If. OSQQut points at the beginning of the array L6.24(1), then adecrement really meanspositioning . OSQQut at the
end of the array L6.24(2). However, . OSQENnd points to one entry past the array and thus . OSQQOut needs to be
adjusted to be within range L6.24(3). OSQPost Front () implements a LIFO queue because the next message
extracted by OSQPend( ) will be the last message inserted by OSQPost Front ().

I NT8U OSQPost Front (OS_EVENT *pevent, void *mnsg)

{
05 Q  *pg;

OS_ENTER CRI Tl CAL() ;

if (pevent->08Event Type != OS EVENT TYPE Q {
0S EXI T_CRITI CAL();
return (OGS ERR EVENT TYPE);

if (pevent->08EventGp) {
OSEvent TaskRdy( pevent, nmsg, OS STAT Q;
0S EXI T_CRITI CAL();
OSSched() ;
return (CS_NO ERR);
} else {
pq = pevent->0SEvent Ptr;
if (pg->CSEntries >= pg->08QSi ze) {
CS EXIT_CRITI CAL() ;
return (OS_Q FULL);

} else {
if (pg->08QQut == pg->08Qctart) { (1)
pg- >C8QQut = pg- >CSQENd; (2)
}
pg->08QQut - - ; (3)

*pg- >CSQQuUt = nBQ;
pg->CSQENt ri es++;
OGS EXIT_CRITICAL();

}
return (CS_NO ERR);

Listing 6.24, Depositing a message in a queue (LI FO).

6.07.05 Getting a message without waiting, OSQAccept()

It is possible to obtain a message from a queue without putting a task to sleep if the queue is empty. This is
accomplished by calling OSQAccept () and the code for this function is shown in listing 6.25. OSQAccept ()
starts by checking that the ECB being pointed to by pevent has been created by OSQCr eat e() L6.25(1).
OSQAccept () then checksto seeif there are any entriesin the queue L6.25(2). If the queue contains at |east one
message, the next pointer is extracted from the queue L6.25(3). The code that calls OSQAccept () will need to
examine the returned value. If OSQAccept () returnsaNULL pointer then a message was not available L6.25(4). A




non-NULL pointer indicates that a message pointer was available. An ISR should use OSQAccept () instead of
OSQPend() . If anentry wasavailable, OSQAccept () extractsthe entry from the queue.

voi d *OSQAccept (OS_EVENT *pevent)

{
void *nsg;
B Q *pg;
05 _ENTER CRI Tl CAL() ;
i f (pevent->0SEvent Type != OS EVENT_TYPE Q ({ (1)
OS_EXIT_CRITI CAL() ;
return ((void *)0);
pa = pevent->0SEventPtr;
if (pg->0SQEntries = 0) { (2)
msg = *pqg- >0SQQut ++; (3)
pg->0SQENt ri es- - ;
i f (pg->08QQut == pg->0CSQEnd) {
pg->0sQQut = pg->OSQBt art ;
} else {
msg = (void *)O; (4)
}
05 _EXI T_CRITI CAL() ;
return (nsg);
}

Listing 6.25, Getting a message without waiting.

6.07.06 Flushing a queue, OSQFlush()

OSQFI ush() alowsyour application to remove all the messages posted to a queue and basically, start with afresh
gueue. The code for this function is shown in listing 6.26. As usual, L C/OSII checks to ensure that pevent is
pointing to a message queue L6.26(1). The IN and OUT pointers are then reset to the beginning of the array and the
number of entriesis cleared L6.26(2). | decided to not check to see if there were any tasks pending on the queue
because this would be irrelevant anyway. In other words, if tasks were waiting on the queue then . OSQEnt ri es

would aready have been set to 0. The only difference is that . OSQ n and . OSQOut may have been pointing
elsewherein the array.

| NT8U OSQFIl ush (OS EVENT *pevent)
{
G5 Q *pg;

OS_ENTER CRI TI CAL() ;

i f (pevent->CSEvent Type != OS_EVENT_TYPE Q { (1)
OS EXIT_CRITI CAL() ;
return (OS5 _ERR EVENT _TYPE);

}

pq = pevent - >CSEvent Ptr;

po->0SQ n = pg->08QBt art ; (2)
pg- >OSQQut pg- >0t art ;

pg- >C8QENtri es 0;
0S8 EXIT_CRITI CAL() ;
return (G5 NO ERR);




Listing 6.26, Flushing the contents of a queue.

6.07.07 Obtaining the status of a queue, OSQQuery()

OSQQuer y() alows your application to take a ‘snapshot’ of the contents of a message queue. The code for this
functionisshowninlisting 6.27. OSQQuer y() ispassed two arguments: pevent containsapointer to the message
gueue which is returned by OSQCr eat e() when the queue is created and, pdat a which is a pointer to a data

structure (OS_Q_DATA, seeuCOS_|I | . H) that will hold information about the message queue. 'Y our application will
thus need to alocate a variable of type OS_Q DATA that will be used to receive the information about the desired

gueue. OS_Q DATA containsthe following fields:

. OSMs g contains the contents pointed to by . OSQQut if there are entries in the queue. If the queue is
empty, . OSMs g contains aNUL L-pointer.

. OSNMs gs contains the number of messages in the queue (i.e. acopy of . OSQEnt ri es).
. OSQSi ze containsthe size of the queue (in number of entries).

. OSEvent Thbl [] and . OSEvent G p contains a snapshot of the message queue wait list. The caller to
OSQQuer y() can thus determine how many tasks are waiting for the queue.

As always, our function checks that pevent pointsto an ECB containing a queue L6.27(1). OSQQuer y() then

copiesthewait list L6.27(2). If the queue contains any entries L6.27(3), the next message pointer to be extracted from
the queue is copied into theOS_Q_DATA structure L6.27(4). |If the queue is empty, then aNULL-pointer is placed in

OS_Q DATALG6.27(5). Finaly, we copy the number of entries and the size of the message queue L6.27(6).

I NTBU OSQQuery (OS_EVENT *pevent, OS_Q DATA *pdat a)
{

B Q  *pg;

INT8U i

I NT8U *psrc;

I NTBU *pdest;

OS_ENTER CRI TI CAL() ;

i f (pevent->CSEvent Type != OS5 EVENT TYPE Q { (1)
OS_EXI T_CRITI CAL() ;
return (CS_ERR EVENT_TYPE);

}
pdat a- >CSEvent G p = pevent - >CSEvent G p; (2)
psrc = &pevent - >CSEvent Tbl [ 0] ;
pdest = &pdat a- >CSEvent Thl [ 0] ;
for (i = 0; i < OS5 EVENT_TBL_SIZE, i++) {
*pdest ++ = *psrc++;

}
pg = (OS_Q *) pevent - >CSEvent Ptr;
if (pg->C8Entries > 0) { (3)
pdat a- >OSMsg = pg- >08QQut ; (4)
} else {
pdat a- >OSMsg = (void *)O0; (5)
}
pdat a- >CSNMsgs = pg- >CSQENtri es; (6)

pdat a- >0SQSi ze = pg- >CSQSi ze;
s EXIT_CRITI CAL() ;
return (OS_NO ERR);




Listing 6.27, Obtaining the status of a queue.

6.07.08 Using a message queue when reading analog inputs

It is often useful in control applicationsto read analog inputs at aregular interval. To accomplish this, you can create
atask and call OSTi meDl y () (seesection5.00, OSTimeDIy()) and specify thedesired sampling period. Asshownin
figure 6-11, you could use a message queue instead and have your task pend on the queue with atimeout. The timeout

corresponds to the desired sampling period. If no other task sends a message to the queue, the task will be resumed
after the specified timeout which basically emulates the OSTi meDl y () function.

Y ou are probably wondering why | decided to use aqueue when OSTi meDl y () doesthetrick just fine. By adding a
queue, you can have other tasksabort thewait by sending amessage thusforcing animmediate conversion. If you add
some intelligence to your messages, you can tell the ADC task to convert a specific channel, tell the task to increase
the sampling rate, and more. In other words, you can say to the task: “ Can you convert analog input #3 for me now?".
After servicing the message, the task would initiate the pend on the queue which would restart the scanning process.

(2)

Y

Analog Inputs } MUX[—® ADC 3
+ (4)

ueue OSQPend()
(1)

SQPost () ———»
(3) XTi nmeout

Figure 611, Reading analog inputs.

6.07.09 Using a queue as a counting semaphore

A message queue can be used as a counting semaphore by initializing and loading a queue with as many nor-NUL L
pointer ((voi d *1) works well) as there are resources available. A task requesting the ‘semaphore’ would call
OSQPend() and would release the *semaphore’ by calling OSQPost () . Listing 6.28 shows how thisworks. You
would use this technique to conserve code space if your application only needed counting semaphores and message
queues (you would then have no need for the semaphore services). Inthiscase, you could setOS_SEM ENto 0 and
only use queuesinstead of both queues and semaphores. Y ou should note that this technique consumes a pointer size
variable for each resource that the semaphoreis guarding as well as requiring a queue control block. In other words,
you will be sacrificing RAM space in order to save code space. Also, message queues services are slower than
semaphore services. This technique would be very inefficient if your counting semaphore (in this case a queue) is
guarding alarge amount of resources (you would require alarge array of pointers).

C5_EVENT *(QSem
voi d *QvsgTbl [ N RESCURCES]




voi d mai n (voi d)

CSlnit();

@em = OSQCr eat e( &QVsgThl [ 0], N_RESOURCES) ;
for (i = 0; i < NRESQURCES; i++) {
OSQPost (@em (void *)1);

CSTaskCreat e(Taskl, .., .., ..);
.OSStart();
}
voi d Taskl (voi d *pdat a)
{
| NT8U err;
for (i) {
OsQPend(&XBem 0, &err); /* Cbtain access to resource(s) */
. /* Task has semaphore, access resource(s) */
OSMQPost (QSem (void )1); /* Rel ease access to resource(s) */
}
}

Listing 6.28, Using a queue as a counting semaphore.




Chapter 7

Memory Management

Y our application can allocate and free dynamic memory using any ANSI C compiler’simal | oc() andf ree()

functions, respectively. However, usingimal | oc () andf r ee() inanembedded real-time system is dangerous
because eventually, you may not be able to obtain a single contiguous memory area because of fragmentation.
Fragmentation is the development of a large number of separate free areas (i.e. the total free memory is fragmented
into small pieces). | discussed the problem of fragmentation in section 4.02 when | indicated that task stacks could be
allocated usingmal | oc(') . Executiontimeof mal | oc() andf r ee() areaso generally non-deterministic

because of the algorithms used to | ocate a contiguous block of free memory.

1 C/OSH| provides an alternativeto mall | oc () and f r ee() by allowing your application to obtain fixed-sized
memory blocks from apartition made of acontiguousmemory areaasillustratedin Figure 7-1. All memory blocksare
the same size and the partition contains an integral number of blocks. Allocation and de-allocation of these memory
blocksis donein constant time and is deterministic.

As shown in Figure 7-2, more than one memory partition can exist and thus, you application can obtain memory
blocks of different sizes. A specific memory block must, however, always be returned to the partition from which it
came from. Thistype of memory management is not subject to fragmentation.

Start address —» A
Partition
Bl ock
\ 4 \ 4

Figure 7-1, Memory partition



Partition #1 Partition #2 Partition #3 Partition #4

Figure 7-2, Multiple memory partitions.



7.00 Memory Control Blocks

p C/OSH | keeps track of memory partitions through the use of a data structure called amemory control block as shown
inlisting 7.1. Each memory partition requires its own memory control block.

typedef struct {
voi d * OSMVemAddr ;
voi d * OSMenfr eeli st ;
I NT32U OsMenBl kSi ze;
I NT32U OSMenN\BI ks;
I NT32U OSMenNFr ee;

} O5_MEM

Listing 7.1, Memory control block data structure.

OSMemAddr isapointer to the beginning (i.e. base) of the memory partition from which memory blocks
will be alocated from. This field is initialized when you create a partition (see section 7.01, Creating a
partition) and is not used thereafter.

OSMenfFr eeli st isapointer used by p C/OS 1 to point to either the next free memory control block or
to the next free memory block. The use depends on whether the memory partition has been created or not
(see section 7.01).

OSMenBl kSi ze determines the size of each memory block in the partition and is a parameter you
specify when the memory partition is created (see section 7.01).

OSMeMNBI ks establishes the total number of memory blocks available from the partition. This
parameter is specified when the partition is created (see section 7.01).

OBMeNNFr ee is used to determine how many memory blocks are available from the partition.

1 C/OSH I initializes the memory manager if you configure OS_MEM ENto 1 in OS_CFG H. Initidization is
doneby OSMem ni t () (whichisautomatically called by OSI ni t () ) and consist of creating alinked list of

memory control blocks as shown in figure 7-3. Y ou specify the maximum number of memory partitions with the
configuration constant OS_MAX_MEM PART (see OS_CFG H) which MUST be set to at least 2.

As can be seen, the CBMeNFr eeLi st field of the control block is used to chain the free control blocks.




OSMemAddr OSMemAddr OSMemAddr
OSMemFreeList —®|oshenfreeLi st | OSMenfr eeli st > »| osMenfreeList T— 0
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b 0S_MAX_MEM_PART >

Figure 7-3, List of free memory control blocks.

7.01 Creating a partition, OSMemCreate()

Your application must create each partition before they can be used. You create a memory partition by calling
OSMentCr eat e( ) . Listing 7.2 shows how you could create a memory partition containing 100 blocks of 32
bytes each.

oS MEM  * ConmTxBuf ;
I NT8U CommTxPar t [ 100] [ 32] ;

void main (void)

{ I NT8U err;

slnit();

.OomnTxBuf = OSMenCr eat e( ComnirxPart, 100, 32, &err);
: (ISSt art();

Listing 7.2, Creating a memory partition.

The code to create a memory partition is shown in listing 7.3. OSMenCr eat e( ) requires four arguments: the
beginning address of the memory partition., the number of blocksto be allocated from this partition, the size (in bytes)
of each block and, a pointer to a variable that will contain an error code when OSMenCr eat e() returns or a
NULL pointer if OSMEMCr eat e() fails. Upon success, OSMenCr eat e( ) returns a pointer to the

allocated memory control block. This pointer must be used in subsequent calls to memory management services (see
ceventzet (), GeMenut () and CSMentuer y( ) in the next sections).

Each memory partition must contain at least 2 memory blocks L7.3(1). Also, each memory block must be able to hold
the size of a pointer because a pointer is used to chain all the memory blocks together L7.3(2). Next,
OSMenCr eat e() obtains a memory control block from the list of free memory control blocks L7.3(3). The

memory control block will contain run-time information about the memory partition. OSMenCr eat e( ') will not




be able to create a memory partition unless amemory control block is available L7.3(4). If amemory control block is
available and we satisfied all the previous conditions, the memory blocks within the partition are linked together in a
singly linked list L7.3(5). When all the blocks are linked, the memory control block is filled with information about
the partition L7.3(6). OSMenCr eat e( ) returns the pointer to the memory control block so it can be used in

subsequent callsto access the memory blocks from this partition L7.3(7).

CS MEM *OSMentr eat e (voi d *addr, | NT32U nbl ks, | NT32U bl ksi ze, | NT8U *err)
{

CS_MEM *prem
I NTBU  *pbl k;
voi d **pl i nk;
I NT32U  i;

if (nblks < 2) { (1)
*err = OS_MEM | NVALI D_BLKS;
return ((CS_ MEM *)0);

if (blksize < sizeof(void *)) { (2)
*err = OS5_MEM | NVALI D SI ZE:
return ((CS_MEM *)0);

}
OS_ENTER _CRI Tl CAL() ;
pmrem = OSMenfr eelLi st ; (3)
if (CSMenfreeList !'= (OS_MEM *)0) {
Oshentfr eeLi st = (OS_MEM *) OSMenfr eeli st- >CSMentr eeli st ;

}

05 EXI T_CRI Tl CAL() ;

if (pmem== (CS_MEM *)0) { (4)
*err = OS_MEM | NVALI D_PART;
return ((CS5_MEM *)0);

}
plink = (void **)addr; (5)
pbl k = (INT8U *)addr + bl ksi ze;
for (i =0; i < (nblks - 1); i++) {
*plink = (void *)pbl k;

plink = (void **)pblk;
= pbl k + bl ksi ze;

}
*plink = (void *)O0;
CS_ENTER_CRI Tl CAL() ;

pnem >CSMemAddr = addr; (6)
pnem >CSMenfr eeLi st = addr;

pnem >0SMeniNFr ee = nbl ks;

prmem >CSMemN\Bl ks = nbl ks;

pnrem >0SMenBl kSi ze = bl ksi ze;

OS _EXI T_CRI Tl CAL() ;

*err = OS_NO ERR

return (pnem; (7)

Listing 7.3, OSMemCreate()

Figure 7-4 shows how the data structures look like when OSMenCr eat e() completes successfully. Note that

the memory blocks are show nicely linked one after the other. At run-time, asyou allocate and de-allocate memory
blocks, the blocks will most likely not bein this order.




pmem —»| oSMemAddr = addr "/V

OSMentr eeli st = addr g

.\
OSMenBIl kSi ze = bl ksi ze
OSMermiNBl ks = nbl ks

.\
OSMenNFree = nbl ks

— Contiguous memory
OSMemCreate() arguments

.\

o~ g

0
\ 4

Figure 7-4, OSMemCreate()

7.02 Obtaining a memory block, OSMemGet()

Y our application can get amemory block from one of the created memory partition by calling OSMenmGet () . You
simply use the pointer returned by OSMenCr eat e( ) in the call to OSMenGet () to specify which partition
the memory block will come from. Obviously, you application will need to know how big the memory block obtained
issothat it doesn’t exceedsits storage capacity. In other words, you must not use more memory than what is available
from the memory block. For example, if a partition contains 32 byte blocks then your application can use up to 32
bytes. When you are done using the block, you must return the block to the proper memory partition (see section 7.03,
Returning a memory block, OSMemPut()).

Listing 7.4 shows the code for OSMentet (). The pointer specify the partition from which you want to get a
memory block from L7.4(1). OSMenGet () first checkstoseeif therearefreeblocksavailableL7.4(2). If ablock

isavailable, it isremoved from the free list L7.4(3). Thefreelist isthen updated L7.4(4) sothat it points to the next
free memory block and, the number of blocksisdecremented indicating that it hasbeen allocated L 7.4(5). The pointer
to the alocated block isfinally returned to your application L7.4(6).

voi d *CsMenCet (OS_MEM *prrem | NT8U *err) (1)

{
voi d *pbl k;

OS_ENTER CRI TI CAL() ;

if (prem >0OSMenNFree > 0) { (2)
pbl k = prmem >0SMenfr eeli st ; (3)
prrem >OSMenfr eelLi st = *(void **) pbl k; (4)
pnmem >0OSMenNFr ee- - ; (5)

S EXIT_CRITI CAL() ;

*err = G5 _NO ERR

return (pblk); (6)
} else {




OGS EXIT CRITI CAL() ;
*err = CS_MEM NO _FREE BLKS;
return ((void *)0);

Ligting 7.4, OSM emGet()

Y ou should note that you can call this function from an ISR because if a memory block is not available, there is no
waiting. The ISR would simply receive aNULL pointer if no memory blocks are available.

7.03 Returning a memory block, OSMemPut()

When your application is done using a memory block, it must return it to the appropriate partition. This is
accomplished by calling OSMenPut (). You should note that OSMenPut () has no way of knowing whether
the memory block returned to the partition belongs to that partition. In other words, if you allocated a memory block
from a partition containing blocks of 32 bytes then you should not return this block to amemory partition containing
blocks of 120 bytes. The next time an application request a block from the 120 bytes partition, it will actually get 32
‘valid’ bytes and the remaining 88 bytes may belong to some other task(s). This could certainly make your system
crash.

Listing 7.5 shows the code for OSMenPut (). You simply pass OSMenPut () the address of the memory
control block for which the memory block belongsto L7.5(1). We then check to see that the memory partition is not

adready full L7.5(2). This situation would certainly indicate that something went wrong during the
allocation/de-allocation process. If the memory partition can accept another memory block, it isinserted in the linked
list of free blocks L7.5(3). Finally, the number of memory blocks in the memory partition isincemented L7.5(4).

I NT8U CSMenPut (OS_MEM *pnem voi d *pbl k) (1)

OS_ENTER CRI TI CAL() ;

if (pmem >0sMenmNFree >= pnenm >CSMemNBl ks) { (2)
CS_EXI T_CRI Tl CAL() ;
return (GS_MEM FULL) ;

*(void **)pbl k = pnmem >OSMenfr eeli st ; (3)
pnmem >CSMenfr eeLi st = pbl k;
prem >CSMenNFr ee++; (4)

CS_EXI T_CRITI CAL() ;
return (OS_NO ERR);

Listing 7.5, OSM emPut()

7.04 Obtaining status about memory partition, OSMemQuery()

OSMenuer y() is used to obtain information about a memory partition. Specifically, your application can
determine how many memory blocks are free, how many memory blocks have been used (i.e. allocated), the size of
each memory block (in bytes), etc. Thisinformation isplaced in adatastructure called OS_IVEM_DATA as shown
inlisting 7.6.

typedef struct {
void *OSAddr; /* Points to beginning address of the nmenory partition */
void  *OSFreeli st; /* Points to beginning of the free list of nenory bl ocks */




| NT32U OSBl kSi ze; /[* Size (in bvtes) of each nmenory bl ock */

I NT32U OSNBI ks; /* Total nunber of blocks in the partition */
| NT32U OSNFr ee; /* Nunber of nenory bl ocks free */
| NT32U OSNUsed; /* Nunber of nenory bl ocks used &y

} OS_MEM DATA;

Listing 7.6, Data structure used to obtain status from a partition.

The code for OSMemQuer y() isshown inlisting 7.7. As you can see, all the fields found in OS5_MEM are

copied to theOS_MEM_DATA data structure with interrupts disabled L 7.7(1). This ensures that the fields will not

bealtered until they areall copied. Y ou should al so notice that computation of the number of blocksused isperformed
outside of the critical section becauseit’s done using the local copy of the dataL7.7(2).

| NT8BU CshventQuery (OS _MEM *prem OS MEM DATA *pdat a)
{

OS_ENTER CRI Tl CAL() ;
pdat a- >OSAddr
pdat a- >OSFr eeLi st
pdat a- >CSBl kSi ze
pdat a- >OSNBI ks
pdat a- >OSNFr ee
OS_EXI T_CRITI CAL() ;

pdat a- >CSNUsed = pdat a- >CSNBl ks - pdat a- >OSNFr ee; (2)
return (CS NO ERR);

pnem >0OSMVemAddr ; (1)
prmem >CSMentr eeli st ;

pmrem >0SMenBl kSi ze;

prmem >0SMenNBl ks;

pnem >OSMenNFr ee;

Listing 7.7, OSMemQuery()

7.05 Using memory partitions

Figure 7-5 shows an exampl e of how you can use the dynamic memory allocation feature of p C/OS-Il aswell asits
message passing capability (see chapter 6). Also, refer tolisting 7.8 for the pseudo-code of the two tasks shown. The
numbersin parenthesisin figure 7-5 correspond to the appropriate actionin listing 7.8.

Thefirst task reads and checks the value of analog inputs (pressures, temperatures, voltages, etc.) and sends a message
to the second task if any of the anal og inputs exceed athreshold. The message sent contains atime stamp, information
about which channel had the error, an error code, an indication of the severity of the error and any other information
you can think of.

Error handling in this exampleis centralized. This meansthat other tasks or even | SRs can post error messages to the
error handling task. The error handling task could be responsible for displaying error messages on a monitor (i.e. a
display), logging errorsto adisk, dispatching other task(s) which would take corrective action(s) based on the error,
etc.
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Figure 7-5, Using dynamic memory allocation.



Anal ogl nput Task()
{

for (;;) {

for (all analog inputs to read) {

Read anal og i nput; (1)
if (anal og i nput exceed threshold) {
Get nenory bl ock; (2)
CGet current systemtine (in clock ticks); (3)
Store the following items in the nenory bl ock: (4)

Systemtinme (i.e. a tinme stanp);

The channel that exceeded the threshol d;
An error code;

The severity of the error;

Etc.
Post the error nmessage to error queue; (5)
(A pointer to the nenory bl ock containing the data)
}
}
Delay task until it’s tinme to sanple anal og i nputs agai n;

Er r or Handl er Task()

for (;;) {
Wit for message fromerror queue; (6)
(CGets a pointer to a nmenory bl ock containing information
about the error reported)
Read the nessage and take action based on error reported; (7)
Return the nmenmory bl ock to the menory partition; (8)

Listing 7.8, Scanning analog inputs and reporting errors.

7.06 Waiting for memory blocks from a partition

Sometimesit’s useful to have atask wait for amemory block in case a partition runs out of blocks. p C/OS-I1 doesn’t
support ‘pending’ on a partitions, but you can support this requirement by adding a counting semaphore (see section
6.05, Semaphores) to guard the memory partition. To obtain amemory block, you simply need to obtain a semaphore
then call OSMenGet () . Thewhole processisshown in listing 7.9.

First we declared our system objects L7.9(1). You should note that | used hard-coded constants for clarity. You
would certainly create#def i ne constantsin areal application. Weinitialize p C/0S-11 by calling OSI ni t ()

L7.9(2). We then create a semaphore with an initial count corresponding to the number of blocks in the partition
L7.9(3). Wethen createthe partition L7.9(4) and one of thetasks L 7.9(5) that will be accessing the partition. Bynow,
you should be able to figure out what you need to do to add the other tasks. It would obviously not make much sense
to use asemaphoreif only onetask isusing memory blocks— there would be no need to ensure mutual exclusion! In
fact, it wouldn’t event make sense to use partitions unless you intend to share memory blocks with other tasks.

Multitasking is then started by calling OSSt ar t () L7.9(6). When the task gets to execute, it obtains amemory
block L7.9(8) only if a semaphore is available L7.9(7). Once the semaphore is available, the memory block is
obtained. Thereisno need to check for returned error code of OSSemPend( ) becausetheonly way pu C/OSI11 will

return to thistask isif amemory block isreleased. Also, you don’t need the error code for OSMentGet () for the




same reason —you must have at least one block in the partition in order for the task to resume. When the task is done
using amemory block, it simply needsto return it to the partition L7.9(9) and signal the semaphore L7.9(10).

OS5 _EVENT *SenmaphorePtr; (1)
s MEM *PartitionPtr;
| NT8U Partition[100][32];

0s_STK TaskSt k[ 1000] ;

void main (void)

{
I NT8U err;
aslnit(); (2)
SerraphorePtr = (OSSentr eat €(100) ; (3)
PartitionPtr = CG8Mentreate(Partition, 100, 32, &err); (4)
.OSTaskCreat e(Task, (void *)0, &TaskStk[999], &err); (5)
osstart () ; (6)
}
voi d Task (voi d *pdat a)
{
I NT8U err;
I NT8U *pbl ock;
for (53) {
OSSenPend( SemaphorePtr, 0, &err); (7)
pbl ock = OCSMentet (PartitionPtr, &err); (8)
' /* Use the nenory bl ock */
CSM&nPut (PartitionPtr, pblock); (9)
OSSenPost ( Semmaphor ePtr) ; (10)
}
}

Listing 7.9, Waiting for memory blocks from a partition.




Chapter 8

Porting uC/OS-l |

This chapter describes in general terms what needs to be done in order to adapt p C/OS-1 to different processors.
Adapting areal-timekernel to amicroprocessor or amicrocontrolleriscalled aport. Most of pC/OSHI iswrittenin C for
portability, however, itisstill necessary to write some processor specific codein C and assembly language. Specifically,
M C/OS 11 manipulates processor registers which can only be done through assembly language. Porting p C/OS-11 to
different processorsisrelatively easy becauset C/OS-11 was designed to be portable. If you already have aport for the
processor you are intending to use then you don’t need to read this chapter, unless of course you want to know how
M C/IOSHI's processor specific code works.

A processor can run g C/OS-I1 if it satisfies the following general requirements:

1
2.
3.

Y ou must have a C compiler for the processor and the C compiler must be able to produce reentrant code.
Y ou must be able to disable and enable interrupts from C.

The processor must support interrupts and you need to provide an interrupt that occurs at regular
intervals (typically between 10 to 100 Hz).

Theprocessor must support ahardware stack, and the processor must be ableto storeafair amount of d ata
on the stack (possibly many Kbytes).

The processor must haveinstructionsto load and store the stack pointer and other CPU registerseither on
the stack or in memory.

Processors like the Motorola 6805 series do not satisfy requirements #4 and #5 so uC/OS-I1 cannot run on such

processors.
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Figure 8-1, u C/OS |1 Hardwar e/Softwar e Architecture

Figure 81 shows pC/OSII's architecture and its relationship with the hardware. When you use p C/OSHI in an
application, you are responsiblefor providing theApplication Software and thep C/OSH1 Configurationsections. This
books (and diskette) contains all the source code for theProcessor Independent Code section as well as the Processor
Specific Codefor thelntel 80x86, Real Mode, LargeModel. If you intend to use p G/OSHI on a different processor, you
will need to either obtain a copy of a port for the processor you intend to use or, write one yourself if the desired
processor port is not available. Check the official p C/OS11 WEB site at www.uCOS-11.comfor alist of available ports.

Porting C/OS 11 isactually quite straightforward once you understand the subtleties of the target processor and the C
compiler you will be using. If your processor and compiler satisfy pu C/OS-II’s requirements, and you have all the
necessary tools at your disposal, porting u C/OS-11 consists of:

Setting the value of 1 #def i ne constants (OS_CPU. H)
Declaring 10 data types (OS_CPU. H)
Declaring 3#def i ne macros(OS_CPU. H

Writing 6 simple functionsin C (OS_CPU_C. C)

A wbdhpE



5. Writing 4 assembly language functions (OS_CPU_A. ASM)

Depending on the processor, a port can consist of writing or changing between 50 and 300 lines of code! Porting
p C/OS-1 could take you anywhere between afew hoursto about aweek.

Once you have a port of yu C/OS I for your processor, you will need to verify its operation. Testing a multitasking
real-timekernel suchasp C/OS-11 isnot as complicated asyou may think. Y ou should test your port without application
code. In other words, test the operations of the kernel by itself. Therearetwo reasonsto dothis. First, you don't want
to complicate thingsanymorethan they need to be. Second, if something doesn’t work, you know that the problem lies
in the port as opposed to your application. Start with a couple of simple tasks and only the ticker interrupt service
routine. Once you get multitasking going, it's quite simple to add your application tasks.

8.00 Development Tools

As previously stated, you need a C compiler for the processor you intend to use in order to port uC/OSII. Because
M C/OS 1 isapreemptive kernel, you should only use a C compiler that generates reentrant code. Y our C compiler must
also be ableto support assembly |anguage programming. Most C compiler designed for embedded systemswill, infact,
alsoincludeanassembler, alinker, and alocator. Thelinker isused to combine object files(compiled and assembled files)
from different modules while the locator will allow you to place the code and data anywhere in the memory map of the
target processor. Your C compiler must also provide a mechanism to disable and enable interrupts from C. Some
compilerswill allow youtoinsertin-line assembly language statementsin your C source code. Thismakesit quite easy
to insert the proper processor instructions to enable and disable interrupts. Other compilers will actually contain
language extensions to enable and disable interrupts directly from C.

8.01 Directoriesand Files

Theinstallation program provided on the distribution diskette will install p C/OS-11 and the port for the Intel 80x86 (Real
Mode, Large Model) onyour hard disk. | devised aconsistent directory structureto allow you to easily find thefilesfor
the desired target processor. If you add a port for another processor, you should consider following the same
conventions.

All the ports shoul d be placed under the\SOFTWARE\UCOS-| directory on your hard drive. The source code for each
microprocessor or microcontroller port MUST be found in either two or threefiles: OS_CPU. H OS_CPU_C. C

and optionally, OS_CPU_A. ASM Theassembly languagefileisoptional because some compilerswill allow youto

have in-line assembly language and thus, you can place the needed assembly language code directly in
OS_CPU_C. C. Thedirectory in which the port is located determines which processor you are using. Below are

examples of thedirectorieswhereyouwould store different ports. Notethat each have the samefile nameseven though
they are totally different targets.

Intel/AMD 80186: \ SOFTWARE\ uCOS- 11\ | x86S:
OS _CPU. H
OS _CPU_A. ASM
OS CPU C. C
\ SOFTWARE\ uCOS-11\1x86L:
OS CPU. H
OS_CPU_A. ASM
OS CPU C.C
Motorola 68HC11: \ SOFTWARE\ uCCOS- 11\ 68HC11:
OS CPU. H
OS CPU_A. ASM



OS_CPU C. C

8.02 INCLUDESH
As | mentioned in chapter 1, | NCLUDES. HisaMASTER includefile and isfound at the
top of al .Cfilesasfollows:

| #i nclude “includes.h”

| NCLUDES. H alows every .C file in your project to be written without concerns about which header file will
actually beneeded. Theonly drawback to havingamaster includefileisthatl NCLUDES. Hmay include header files
that are not pertinent to theactual .Cfilebeing compiled. Thismeansthat each filewill require extratimeto compile. This
inconvenience is offset by code portability. You can edit | NCLUDES. H to add your own header files but, your
header files should be added at the end of the list.

8.03 OS CPU.H

OS_ CPU. Hcontainsprocessor and implementation specific#def i Nes constants, macros, andt ypedef s.
The general layout of OS_ CPU. Hisshowninlisting 8.1:



#ifdef 08 CPU Q.CBALS
#defi ne O5_CPU EXT

#el se

#define G5 _CPU EXT extern
#endi f

/*

KAk k ok kA Rk h kA Rk kA Ak h kA h kA h Ak ok kA k ko h Ak Ak h ok khkh ok hk ok kkhh ko hk kA ko h ok k ok ok kkh ok kkhkkhhkkkhkkkhkkhhkhhkkkhkkkh k%
* DATA TYPES

* (Conpi | er Speci fic)

L T T

*/

typedef unsigned char BOOLEAN

typedef unsigned char | NT8U, /* Unsigned 8 bit quantity */ (1)
typedef signed char |NT8S; /* Signed 8 bit quantity */
typedef unsigned int I NT16U; /* Unsigned 16 bit quantity */
typedef signed int | NT16S; /* Signed 16 bit quantity )
typedef unsigned |ong | NT32U; /* Unsigned 32 bit quantity */
typedef signed |ong |NT32S; /* Signed 32 bit quantity */
typedef fl oat FP32; /* Single precision floating point */ (2)
typedef doubl e FP64; /* Doubl e precision floating point */
typedef unsigned int CB_STK; /* Each stack entry is 16-bit w de */

/*

B

* Processor Specifics

B

*/

#define OS ENTER CRITICAL() 2?2?72 /* Disable interrupts */ (3)
#define OS5 EXIT_CR Tl CAL() ?2?7? /* Enable interrupts */
#define OB _STK GROAMH 1 /* Define stack growth: 1 = Down, 0 = Up */ (4)
#define C5_TASK SW) ??7? (5)

Listing 8.1, Contentsof OS_CPU.H

8.03.01 OS CPU.H, Compiler Specific Data Types

Because different microprocessors have different word length, the port of u C/OS-11 includes a series of type definitions
that ensuresportability. Specifically, u C/OS-1's code never makesuseof C's S hort,i nt and, | ONg data types
because they areinherently non-portable. Instead, | defined integer data types that are both portable and intuitive
L8.1(1). Also, for convenience, | have included floating-point data types L8.1(2) even though p C/OS-I1 doesn’t make
use of floating-point.

Thel NT16U datatype, for example, alwaysrepresentsa16-hit unsignedinteger. u C/OS-I1 and your application code
can now assume that the range of values for variables declared with thistypeisfrom 0 to 65535. A uC/OS-Il port to a
32-hit processor could mean that an | NT16U is actually declared as an unsi gned short instead of an
unsi gned i Nt . Where pC/OSII is concerned, however, it still dealswithanl NT16U.

Youmust tell p C/OS 1| thedatatypeof atask’s stack. Thisis done by declaring the proper C datatype for OS_STK
If stack el ementson your processor are 32-bit and your compiler documentation specify thatani Nt is32-bit then, you
would declareOS_STKasbeingof type UNSi ghed i nt . All task stacks MUST be declared usingOS_STK
asitsdatatype.




All you haveto doisto consult thecompiler’s manual and find the standard C data types that correspondsto the types
expected by p C/OSHI.

8.03.02 OS CPU.H, 0s ENTER _CRITICAL() and OS EXIT_CRITICAL()

HAOSHI like al reaktime kernels need to disable interrupts in order to access critical sections of code, and re-enable
interrupts when done. This alows u C/OS-I1 to protect critical code from being entered simultaneously from either
multipletasksor Interrupt Service Routines (ISRs). Theinterrupt disabletimeisone of the most important specification
that areal-time kernel vendor can provide because it affects the responsiveness of your system to real-time events.
M CIOS 1 tries to keep the interrupt disable time to a minimum but, with p C/OS-I1, interrupt disable time is largely
dependent on the processor architecture, and the quality of the code generated by the compiler. Every processor
generally provideinstructionsto disable/enableinterruptsand your C compiler must have amechanism to perform these
operations directly from C. Some compilers will alow you to insert in-line assembly language statements in your C
sourcecode. Thismakesit quiteeasy toinsert processor instructionsto enableand disable interrupts. Other compilers
will actually contain language extensions to enable and disable interrupts directly from C. To hide the implementation

method chosen by the compiler manufacturer, i1 C/OS-11 defines two macros to disable and enable nterrupts:
OS_ENTER_CRI Tl CAL() and OS_EXI T_CRI Tl CAL( ) , respectively L8.1(3).

1 C/OS I s critical sections arewrapped with OS_ENTER_CRI TI CAL() and OS_EXI T_CRI Tl CAL()
as shown below:

UG/ OS-11 Service Function

{
OS_ENTER _CRI Tl CAL() ;
/* pC/ OS-11 critical code section */
OS_EXI T_CRI TI CAL() ;

}

Method #1:

Thefirst and simplest way to implement these two macrosisto invokethe processor instruction to disableinterruptsfor
OS_ENTER_CRI TI CAL() andtheenableinterruptsinstructionfor OS_EXI T_CRI TI CAL() . There
is, however, alittle problem with this scenario. If you called the u C/OS-11 function with interrupts disabled then, upon
return from p C/OS-I 1, interrupts would be enabled! If you had interrupts disabled, you may have wanted them to be
disabled upon return from the p C/OS-11 function. In this case, the above implementation would not be adequate.

Method #2:

The second way toimplementOS_ENTER_CRI Tl CAL() isto save theinterrupt disable status onto the stack
andthen, disableinterrupts. OS_EXI T_CRI TI CAL(') would simply beimplemented by restoring the interrupt
statusfromthestack. Usingthisscheme, if youcalledap C/OS-11 service with either interrupts enabled or disabled then,
thestatuswould be preserved acrossthecall. If you call ap C/OS|1 service with interrupts disabled, you are potentially
extending the interrupt latency of your application. Y our application canuseOS_ENTER_CRI Tl CAL() and
OS_EXI T_CRI TI CAL() to also protect critical sections of code. Be careful, however, because your
application will ‘crash’ if you have interrupts disabled before calling aservice such asOSTi meDl y (') . Thiswill
happen because the task will be suspended until time expires but, because interrupts are disabled, you would never
servicethetickinterrupt! Obviously, all the PEND callsare also subject to thisproblem so, be careful. Asageneral rule,
you should always call u C/OS-11 services with interrupts enabl ed!

The question isthus, which oneisbetter? Well, that all depends on what you are willing to sacrifice. |f you don’t care
in your application whether interrupts are enabled after calling a u C/OS-11 service then, you should opt for the first
method because of performance. If youwant to preserve theinterrupt disable statusacross p C/OSHI service calls then
obviously the second method is for you.




Just to give you an example, disabling interrupts on an Intel 80186 is done by executing the ST instructions and
enabling interrupts is done by executing the CL | instruction. Y ou can thus implement the macros as fol lows:

#define OS_ENTER CRI TI CAL() asm CLI
#define OS _EXI T_CRI Tl CAL() asm STI

BoththeCL| andST]I instructionsexecuteinlessthat 2 clock cycles each on thisprocessor (i.e. total of 4cycles). To
preserve the interrupt status you would need to implement the macros as follows:

#define OS_ENTER CRI Tl CAL() asm PUSHF; CLI
#define OS_EXI T_CRI TI CAL() asm POPF

Inthiscase, OS_ENTER_CRI TI CAL() would consume 12 clock cycleswhileOS_EXI T_CRI Tl CAL( )
would use upanother 8 clock cycles (i.e. atotal of 20 cycles). Preserving the state of the interrupt disable status would
thustake 16 clock cycleslonger than simply disabling/enabling interrupts (at least on the 80186). Obvioudly, if you have
afaster processor such as an Intel Pentiumt| then, the difference would be minimal.

8.03.03 OS CPU.H,0S STK_GROWTH

The stack on most microprocessorsand microcontrollersgrowsfrom high-memory to lonrmemory. There are, however,
some processors that work the other way around. L C/OS I has been designed to be able to handle either flavor. This

is accomplished by specifying to pC/OSI1l which way the stack grows through the configuration constant
OS_STK_GROWIH L8.1(4) as shown below:

Set OS_STK_GROWIH to 0 for Low to High memory stack growth.
Set OS_STK_GROWIH to 1 for High to Low memory stack growth.

8.03.04 OS CPU.H, OS TASK_SW()

OS_TASK_SW() L8.1(5) is a macro that is invoked when 1 C/OS-I1 switches from a low-priority task to the
highestpriority task. OS_TASK_SW() is always called from task level code. Another mechanism,
OSI nt EXi t (), isused to perform acontext switch when an ISR makes a higher priority task ready for execution.
A context switch simply consist of saving the processor registers on the stack of the task being suspended, and
restoring the registers of the higher-priority task from its stack.

Inu C/OSH1, the stack frame for aready task alwayslooksasif aninterrupt hasjust occurred and all processor registers
weresaved ontoit. Inother words, al that i C/OS-11 hasto do to run aready task istorestoreall processor registersfrom

thetask’s stack and execute areturn frominterrupt. To switch context, you should implementOS_TASK_SW( ) so
that you simulateaninterrupt. Most processorsprovide either softwareinterrupt or T RAP instructions to accomplish

this. The ISR or trap handler (also called the ‘exception handler’) MUST vector to the assembly language function
OSCt X SW( ) (see section 8.04.02).

For example, aport for an Intel or AMD 80x86 processor would use an| NT instruction. Theinterrupt handler would
need to vector toOSCt x SW( ) . A port for the Motorola68HC11 processor would most likely usethe SW' instruction.
Again, the SW  handler would be OSCt XSW( ) . Finally, a port for a Motorola 680x0/CPU32 processor would
probably use one of the 16 TRAP instructions. Of course, the selected TRAP handler would be none other than
OSCt xSwW() .

There are some processors like the Zilog Z80 that do not provide a software interrupt mechanism. In this case, you
would need to simulate the stack frame as closely to an interrupt stack frame as you can. In this case,




OS_TASK_SW) wouldsimply call OSCt X SW( ) instead of vector toit. The Z80isaprocessor that has been
ported to u C/OS and thus would be portable to p C/OS-II.

8.04 OS CPU_A.ASM

A pC/OSII port requires that you write four fairly simple assembly language functions:

OSSt art Hi ghRdy/()
OSCt xSwW( )

OSI nt Ct xSw()
OSTi ckl SR()

If your compiler supportsin-line assembly language code, you could actually place all the processor specific code into
OS_CPU_C. Cinstead of having a separate assembly language file.

8.04.01 OS _CPU_A.ASM, OSStartHighRdy()

This function is called by OSSt art () to start the highest priority task ready-to-run. Before you can call

OSSt art () , however, you MUST have created at least one of your tasks (see OSTaskCr eat () and
OSTaskCreat eExt ()). OSStart H ghRdy() assumesthat OSTCBHi ghRdy points to the
task control block of thetask with the highest priority. Asmentionedprevioudy, inp C/OS-I1, the stack framefor aready
task alwayslooksasif aninterrupt hasjust occurred and all processor registerswere saved onto it. To run the highest
priority task all you need to do isrestore all processor registersfrom the task’s stack in the proper order and, execute a
returnfrominterrupt. To simplify things, the stack pointer isalways stored at the beginning of thetask control block (i.e.
itsOS_TCB). In other words, the stack pointer of the task to resume is always stored at offset 0inthe OS_TCB,

Note that OSSt ar t Hi ghRdy () MuUST cal OSTask SwHook () becausewe are basically doing a‘half’
context switch — we are restoring the registers of the highest priority task. OSTask SwHook () can examine
OSRunni ng to tell it whether OSTask SWHooK () was called from OSSt ar t Hi ghRdy () (.e if
OSRunni ng isFALSE) or from aregular context switch (i.e. OSRunni ng isTRUE).

OSSt art Hi ghRdy () MusT alsosetOSRunni ng to TRUE before the high priority task is restored (but
after callingOSTask SwHook () ).

8.04.02 OS CPU_A.ASM, OSCtxSw()

As previously mentioned, a task level context switch is accomplished by issuing a software interrupt instruction or,
depending on the processor, executing a T RAP instruction. The interrupt service routine, trap or exception handler

MUST vector to OSCt X SwW( ) .

Thesequenceof eventsthat leadsp C/OS-11 to vector to OSCt x SW( ) isasfollows. Thecurrent task callsaservice
provided by p C/OSH | which causesahigher priority task to beready-to-run. Attheend of theservicecal, u C/OS|I cals
the function OSSched() which concludes that the current task is no longer the most important task to run.

OSSched( ) loads the address of the highest priority task into OSTCBHi ghRdy and then executes the
software interrupt or trap instruction by invoking the macro OS_TASK_SW() . Note that the variable
OSTCBCur already containsapointer to the current task’s Task Control Block, OS_TCB. The software interrupt

instruction (or trap) forces some of the processor registers (most likely the return address and the processor’s status
word) onto the current task’s stack and the processor then vectors to OSCt X Sw( ) .



The pseudo code of what needs to be done by OSCt X SW( ) is shown in listing 8.2. This code must be written in
assembly language because you cannot access CPU registers directly from C.

voi d OSCt xSw( voi d)

{
Save processor registers;
Save the current task’s stack pointer into the current task’s OS_TCB:
OSTCBCur - >OSTCBSt kPtr = Stack pointer;
Cal | user definabl e OSTaskSwHook() ;
OSTCBCur = OSTCBH ghRdy;
OSPri oCur = OSPri oH ghRdy;
CGet the stack pointer of the task to resune:
St ack poi nter = OSTCBH ghRdy- >OSTCBSt kPt r ;
Restore all processor registers fromthe new task’s stack;
Execute a return frominterrupt instruction;
}

Listing 8.2, Pseudo code for OSCtxSw()

Y ou should note that interrupts are disabled during OSCt X SW( ) and also during execution of the user definable
function OSTask SwHook () .




8.04.03 OS CPU_A.ASM, OSIntCtxSw()

OSI nt Ct XSW( ) isafunction that is called by OSI nt EXi t () to perform a context switch from an ISR.
Because OSI Nt Ct X SW( ) iscalled from an ISR, it is assumed that all the processor registers are properly saved
ontotheinterruptedtask’sstack. Infact, there are more things on the stack framethanweneed. OSI nt Ct XSW( )
will thus have to clean up the stack so that the interrupted task isleft with just the proper stack frame content.

Tounderstand what needsto bedoneinOSI nt Ct X SW( ) , letslook at the sequence of eventsthat leads u C/OS-I
tocall OSI nt Ct XSW( ) . Y oumay want torefer tofigure8-2 to help understand the following description. We will
assume that interrupts are not nested (i.e. an ISRswill not be interrupted), interrupts are enabled, and the processor is
executing task level code. When an interrupt arrives, the processor completes the current instruction, recognizes the
interrupt and initiates an interrupt handling procedure. Thisgenerally consist of pushing the processor status register
and thereturn addressof theinterrupted taskonto the stack F8-2(1). The order and which registers are pushed onto the
stack isirrelevant.

LOW MEMORY

(5) <| Return address to caller of OSIntCtxSw() <— SP Points Here!

( 4) < Processor Status Word ( 6)
(3) < Return address to caller of OSIntExit()

<
SP must be adjusted
to point here.
Saved Processor Registers This new SP is saved into
( 2) g the preempted task's OS_TCB.
(7)
1 < Interrupt Return Address Stack Growth
( ) Processor Status Word

HIGH MEMORY

Figure8-2, Stack contentsduring an ISR

The CPU then vectorsto the proper ISR. u C/OS-1 requires that your ISR begins by saving the rest of the processor
registersF8-2(2). Oncetheregistersaresaved, L C/OS-11 requiresthat you either call OSI nt Ent er (1) or, that you
increment the global variable OSI nt Nest i Ng by one. At this point, the interrupted task’s stack frame only
contains the register contents of the interrupted task. The ISR can now start servicing the interrupting device and
possibly, make a higher priority task ready. This would occur if the ISR sends a message to a task (by calling
OSMboxPost () or OSQPosSt () ), resume a task (by caling OSTaskResume() ), invoke



OSTi meTi ck() orOSTi meDl yResume( ) . Let usassume that a higher priority task is made ready to
run.

L C/OSH1 requires that your ISR callsOSI nt EXi t () when the ISR completes servicing the interrupting device.
OSI nt EXi t () basicalytell p C/OS-I1 that it’ stimeto return back to task level code. Thecall toOSI nt Exi t ()
causes the return address of the caller to be pushed onto the interrupted task’s stack F8-2(3).

OSI nt Exi t () starts by disabling interrupts because it needs to execute critical code. Depending on how
OS_ENTER_CRI Tl CAL() is implemented (see section 8.03.02), the processor’s status register could be
pushed ontotheinterrupted task’sstack F8-2(4). OSI nt EXi t () noticesthat the interrupted task isno longer the
task that needs to run because a higher priority task is now ready. In this case, the pointer OSTCBHi ghRdy is
madeto point tothenewtask’s OS_TCB andOSI nt Exi t () callsOSI nt Ct XSW( ) to perform the context
switch. CallingOSI nt Ct XSW( ) causesthereturn addressto be pushed onto theinterrupted task’s stack F8-2(5).

Asweareswitching context, weonly want toleaveitems F8-2(1) and F8-2(2) on the stack and ignoreitemsF8-2(3), F8-2(4)
and F8-2(5). Thisis accomplished by adding a ‘constant’ to the stack pointer F8-2(6). The exact amount of stack
adjustment must be known and this value greatly depends on the processor being ported (an address can be 16-bit,
32-bit or 64-hit), the compiler used, compiler options, memory model, etc. Also, theprocessor statusword could be 8, 16,
32or even64-bitwideand, OSI Nt EXi t () may allocatelocal variables. Some processorsallow you to directly add
aconstant to the stack pointer, othersdon’t. In thelatter case, you can simply execute the appropriate numb er of pops
instructions to one of the processor registers to accomplish the same thing. Once the stack is adjusted, the new stack
pointer can be saved into theOS_TCB of the task being switched out F8-2(7).

OSI nt Ct XSW( ) isthe only function in i C/OS-11 (and also p C/OS) that is compiler specific and has generated

moree-mail than any other aspect of u C/OS. If your port crashes after afew context switchesthen, you should suspect
that the stack is not being properly adjusted inOSI nt Ct X Sw( ) .

The pseudo code in listing 8.3 shows what needs to be done by OSI Nt Ct X SW( ) . This code must be written in
assembly language because you cannot access CPU registers directly from C. If your C compiler supports in-line

assembly, you can put the codefor OSI Nt Ct XSW( ) in OS_CPU_C. Cinstead of OS_CPU_A. ASM As

you can see, except for thefirst line, the codeisidentical to OSCt X SW( ) . Y ou can thus reduce the amount of code
in the port by ‘jumping’ to the appropriate section of codein OSCt X Sw( ) .

voi d OSI nt Ct xSw( voi d)

{
Adj ust the stack pointer to renove calls to:
OSIntExit(),
OSI nt Ct xSW() and possibly the push of the processor status word;
Save the current task’s stack pointer into the current task’s OS_TCB:
OSTCBCur - >OSTCBSt kPt r = St ack poi nter;
Cal | user definabl e OSTaskSwHook() ;
OSTCBCur = OSTCBHi ghRdy;
OSPri oCur = OSPri oHi ghRdy;
CGet the stack pointer of the task to resune:
St ack pointer = OSTCBH ghRdy- >OSTCBSt kPt r ;
Restore all processor registers fromthe new task’s stack;
Execute a return frominterrupt instruction;
}

Listing 8.3, Pseudo code for OSIntCtxSw()




8.04.04 OS CPU_A.ASM, OSTickl SR()

M C/OSHH requires that you provide a periodic time source to keep track of time delays and timeouts. A ‘tick’ should
occur between 10 and 100 times per second, or Hertz. To accomplish this, you can either dedicate a hardware timer, or
obtain 50/60 Hz from an AC power line.

Y ou MUST enableticker interrupts AFTER multitasking has started, i.e. after callingOSSt ar t () . Inother words,
you should initialize and tick interruptsin the first task that e_xecutesfollowing acalto OSSt art (). A common
mistake isto enableticker interrupts between callingOSI ni t () and OSSt art () asshowninlisting 8.4:

voi d mai n(voi d)

{
bSInit(); /[* Initialize pc/ Cs-11 */
}* Application initialization code ... */
/[* ... Create at | east on task by calling OSTaskCreate() */
iEnabIe TICKER interrupts; /* DO NOT DO TH S HERE!!'! */
osstart () /* Start multitasking *
}

Listing 8.4, Incorrect placeto start thetick interrupt.

What could happen (and it hashappened) isthat thetick interrupt c ould be serviced before u C/OS-11 startsthefirst task.
At thispoint, u C/OS 1 isin an unknown state and will cause your application to crash.

The pseudo code for thetick ISR isshowninlisting 8.5. Thiscode must be written in assembly language because you
cannot access CPU registersdirectly from C. If your processor isabletoincrement OSI nt Nest | ng with asingle

instruction then, there s no need for you to call OSI nt Ent er () . IncrementingOSI nt Nest i ng is much
quicker than going through the overhead of the function call and return. OSI Nt Ent er () only increments the
OSI nt Nest i ng, while protecting that increment in acritical section.

voi d OSTi ckl SR(voi d)
{

Save processor registers;
Call OSIntEnter() or increment OSIntNesting;

Cal | OSTi nmeTi ck() ;
Call OSIntExit();

Rest ore processor registers;
Execute a return frominterrupt instruction;

Listing 8.5, Pseudo code for Tick ISR




8.05 OS CPU_C.C

A L C/OSII port requires that you write six fairly simple C functions:

OSTaskStklnit()
OSTaskCr eat eHook()
OSTaskDel Hook()
OSTaskSwHook ()
OSTaskSt at Hook ()
OSTi meTi ckHook()

Theonly functionthat isactually necessary isOSTask St K1 ni t () . Theother fivefunctionsMUST bedeclared
but don’t need to contain any code inside them.

8.05.01 OS CPU_C.C, OSTaskStkinit()
ThisfunctioniscalledbyOSTaskCr eat e() andOSTaskCr eat eExt () toinitialize the stack frame of

atask so that the stack looksasif an interrupt just occurred and all the processor registers were pushed onto that stack.
Figure8-3showswhat OSTask St kI ni t () will put on the stack of the task being created. Notethat figure 8-3
assumesastack growing from high-memory to low-memory. The discussion that follows appliesjust aswell for a stack
growing in the opposite direction.

LOW MEMORY
<—— Stack Pointer
(4)
(3) Saved Processor Registers
) < Interrupt Return Address Stack Growth
( ) Processor Status Word
Task start address
(1) e
pdata
v

HIGH MEMORY



Figure 8-3, Stack frame initialization with ‘pdata’ passed on the stack

Whenyou create atask, you specify toOSTaskCr eat e() or OSTaskCr eat eExt () the start address of the task,
you passit apointer called Pdat a, thetask’s top-of-stack and the task’s priority. OSTaskCr eat eExt ()
requires additional arguments but these areirrelevant in discussingOSTask St K1 ni t (1) . To properly initiaize
the stack frame, OSTask St kI ni t (') only requires the first three arguments just mentioned in addition to an
‘option’ value which isonly availableinOSTaskCr eat eExt () .

Recall that under p C/OS-11, atask iswritten as shown below. A task isan infinite loop but otherwise looksjust like any
other C function. When thetask is started by pu C/OS-I1, it will receive an argument just as if it was called by another
function.

void MyTask (void *pdata)

{
/* Do something with argunment ‘pdata’ */
for (;;) {
/* Task code */
}
}

IfIweretocall My Tas k(') from another function, the C compiler would push the argument onto the stack followed
by the return address of the function calling My Tas k(') . Some compilerswould actually passpdat a inoneor
moreregisters. I'll discussthissituation later. AssumingPdat a ispushed ontothestack, OSTask St kI ni t ()
simply simul atesthisscenario and loadsthe stack accordingly F8-3(1). It turnsout that, unlikeaC function call, however,
wereally don’t know what the return address of the caller is. All we haveisthe start address of the task, not the return
address of the function that would have called this function (i.e. task)! It turnsout that we don’t really care because a
task is not supposed to return back to another function anyway.

At thispoint, weneedto put onthe stack there gistersthat are automatical ly pushed by the processor when it recognizes
and startsservicing aninterrupt. Some processorswill actually stack all of itsregisterswhile otherswill stack just afew.
Generally speaking, aprocessor will stack at leastthe value of the program counter for the instruction to return to upon
returning from an interrupt and, the processor status word F8-3(2). Y ou must obviously match the order exactly.

Next, you need to put on the stack the rest of the processor registers F8-3(3). The stacking order depends on whether
your processor gives you achoice or not. Some processors have one or more instructions that pushes many registers
at once. Y ou would thus have to emulate the stacking order of such instruction(s). To give you an example, the Intel

80x86 has thePUSHA instruction which pushes 8 registers onto the stack. On the Motorola68HC11 processor, all the
registers are automatically pushed onto the stack during an interrupt response so, you will also need to matchthe same
stacking order.

Now it's time to come back to the issue of what to do if your C compiler passes the pdat a argument in registers
instead of on the stack. Y ou will need to find out from the compiler documentation the register whereP dat awould
actually bestoredin. Thestack framewould|ook asshowninfigure8-4. pdat awouldsi mply be placed on the stack
in the area where you would save the corresponding register.
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Figure 84, Stack frame initialization with ‘pdata’ passed in register

Onceyou’ ve completed theinitialization of thestack, OSTask St kI ni t (1) will need to return the address where
the stack pointer would point to after the stacking is complete F8-3(4). OSTaskCreate() or
OSTaskCr eat eExt () will takethisaddressand saveit in thetask control block (OS_TCB). The processor
documentation will tell you whether the stack pointer needs to point to the next ‘free’ location on the stack or, the

location of thelast stored value. For example, onan Intel 80x86 processor, the stack pointer pointsto thelast stored data
while on aMotorola 6BHC11 processor, it points at the next free location.

8.05.02 OS_CPU_C.C, OSTaskCreateHook()

OSTaskCr eat eHook () is called whenever a task is created by either OSTaskCreat e() or
OSTaskCr eat eExt (). Thisallows you or the user of your port to extend the functionality of p C/OS-I.
OSTaskCr eat eHook( ) iscaled when pC/OSI1 is done setting up its internal structures but before the
scheduler iscalled. Interrupts are disabled when thisfunction is called. Because of this, you should keep the code in
this function to a minimum because it directly affects interrupt latency.

When called, OSTask Cr eat eHook (') receivesapointer tothe OS_TCB of the task created and can thus
access al of thestructure elements. OSTaskCr eat eHook() has limited capability when the task is created
withOSTaskCr eat e() . However, with OSTaskCr eat eExt (), you get access to a TCB extension
pointer (OSTCBEXt Pt r )in OS_TCB which can be used to access additional data about the task such as the
contents of floating-point registers, MMU (Memory Management Unit) registers, task counters, debuginformation, etc.



The code for OSTaskCr eat eHook() is generated only if OS_CPU_HOOKS_EN is set to 1 in
OS_CFG. H Thisallowstheuser of your port to redefine all the hook functionsin adifferent file. Obviously, users
of your port would need access to the source of your port to compile your port withOS_ CPU_HOOKS_ ENset to
0in order to prevent multiply defined symbols at link time.

8.0503 OS CPU_C.C, OSTaskDelHook()

OSTaskDel Hook( ) iscalledwhenever ataskisdeleted. OSTask Del Hook () iscalled before unlinking
thetask fromp C/OSHI" sinternal linked list of activetasks. Whencalled, OSTaskDel Hook () receivesapointer
to the task control block (OS_TCB) of the task being deleted and can thus access all of the structure elements.

OSTaskDel Hook() can see if a TCB extension has been created (non-NULL pointer).
OSTaskDel Hook () would thus be responsible for performing cleanup operations. OSTask Del Hook ()
is not expected to return anything.

ThecodeforOSTaskDel Hook () isgeneratedonlyif OS_CPU_HOOKS_ENssetto 1inOS_CFG. H

8.0504 OS CPU_C.C, OSTaskSwHook()

OSTask SwHooKk () iscalled whenever atask switch occurs. Thishappens whether the task switch is performed
by OSCt XSW( ) or OSI nt Ct xSwW() . OSTaskSwHook() can directly access OSTCBCur and
OSTCBHi ghRdy because these are global variables. Of course, OSTCBCur pointsto the OS_TCB of the
task being switched out and OSTCBHI ghRdY points to the OS_TCB of the new task. You should note that
interrupts are always disabled during the call to OSTas k SWHo oKk ( ) and thus, you should keep any additional
code to aminimum sinceit will affect interrupt latency. OSTask SWHoOK () doesn’t have any arguments and is
not expected to return anything.

The code for OSTask SwHook () isgenerated only if OS_CPU_HOOKS_ENissetto 1inOS_CFG. H

8.05.05 OS CPU_C.C, OSTaskStatHook()
OSTaskSt at HOOk( ) is called once per second by OSTaskSt at () . You can extend the statistics
capability withOSTask St at Hook (') . Forinstance, you could keep track and display the executiontimeof each

task, the percentage of the CPU that is used by each task, how often each task executes and more.
OSTaskSt at Hook () doesn’t haveany arguments and is not expected to return anything.

The code for OSTaskSt at Hook() is generated only if OS_CPU_HOOKS_EN s set to 1 in
OS CFG. H

8.05.06 OS CPU_C.C, OSTimeTickHook()

OSTaskTi meHook() is caled by OSTi meTick() a every system tick. In fact,
OSTi meTi ckHook() is called before a tick is actually processed by p C/OS-II to give your port or the
application first claim onthetick. OSTi MeTi ckHook () doesn’t have any arguments and is not expected to
return anything.

The code for OSTi meTi ckHook() is generated only if OS_CPU_HOOKS_EN is set to 1 in
OC CFG. H



OSTaskCreateHook()

voi d OSTaskOr eat eHook( O5_TCB *pt ch)

File Called from Code enabled by
0S CPU_C.C OSTaskCreate() and OS CPU_HOOKS EN
OSTaskCreateExt()

Thisfunctioniscalled whenever atask iscreated. OSTaskCr eat eHook () iscalled after a TCB has been allocated
and initialized and, the stack frame of thetask isalso initidlized. OSTaskCr eat eHook() allows you to extend the
functionality of thetask creation functionwithyour ownfeatures. For example, you can initialize and store the contents
of floating-point registers, MMU registers or anything else that can be associated with atask. You would, however,

typically store thisadditional information in memory that would be allocated by your application. Y ou could also use
OSTaskCr eat eHook( ) totrigger an oscilloscope, alogic analyzer or set a breakpoint.

Arguments
pt cb isapointer to the task control block of the task created.
Returned Value
NONE
Notes/War nings

Interrupts are disabled when this function is called. Because of this, you should keep the code in this function to a
minimum because it can directly affectsinterrupt latency.

Example
This example assumes that you created atask using theOSTaskCr eat eExt () function because it is expecting to
havethe. OSTCBExt Pt r fieldinthetask’s OS_TCB contain a pointer to storage for floating-point registers.

voi d OSTaskCr eat eHook (OS_TCB *pt ch)

{
if (ptcb->0OSTCBExtPtr !'= (void *)0) {
/* Save contents of floating-point registers in .. */
/* .. the TCB extension */
}
}

OSTaskDelHook()

voi d OSTaskDel Hook(Os_TCB *pt ch)

File Called from Code enabled by
OS CPU_C.C OSTaskDél() OS CPU_HOOKS EN

Thisfunctioniscalledwhenever you delete atask by callingOSTaskDel () . You could thus dispose of memory you
would have alocated through the task create hook, OSTaskCr eat eHook() . OSTaskDel Hook() iscalled just
before the TCB is removed from the TCB chain. You could aso use OSTaskCr eat eHook() to trigger an
oscilloscope, alogic analyzer or set abreakpoint.




Arguments
pt cb isapointer to the task control block of the task being deleted.
Returned Value
NONE
Notes/Warnings

Interrupts are disabled when this function iscalled. Because of this, you should keep the code in this function to a
minimum because it directly affectsinterrupt latency.

Example

voi d OSTaskDel Hook (OS_TCB *ptch)
{

/* Qutput signal to trigger an oscill oscope */

}

OSTaskSwHook()

voi d OSTaskSwHook( voi d)

File Called from Code enabled by
0S CPU_C.C OSCtxSw() and OSIntCtxSw() 0OS CPU_HOOKS ENA

Thisfunctioniscalled whenever acontext switchisperformed. Theglobal variableOSTCBHi ghRdy pointsto the TCB
of the task that will be getting the CPU while OSTCBCur will point to the TCB of the task being switched out.
OSTaskSwHook () iscalledjust after saving the task’ s registers and saving the stack pointer into the current task’s
TCB. You can use this function to save the contents of floating-point registers, MMU registers, keep track of task
execution time, keep track of how many times the task has been switched-in, and more.
Arguments
NONE
Returned Value

NONE
Notes/War nings

Interrupts are disabled when thisfunction is called. Because of this, you should keep the code in this function to a
minimum becauseit directly affectsinterrupt latency.

Example
voi d OSTaskSwHook (voi d)
{

/* Save floating-point registers in current task’s TCB ext. */




/* Restore floatina-point reaisters in current task’s TCB ext. */

}

OSTaskStatHook()

voi d OSTaskSt at Hook(voi d)

File Called from Code enabled by
0S CPU C.C OSTaskStat() 0S CPU_HOOKS EN

Thisfunctioniscalled every second by p C/OS-II's statistic task and allows you to add your own statistics.
Arguments
NONE
Returned Value
NONE
Notes/War nings

The statistic task starts executing about 5 seconds after callingOSSt ar t () . Note that thisfunction will not be called
if either OS_TASK_STAT_ENor OS_TASK_CREATE_EXT_ENissettoO.

Example
voi d OSTaskSt at Hook (voi d)
{
/* Conpute the total execution tinme of all the tasks */
/* Conpute the percentage of execution of each task */
}

OSTimeTickHook()

voi d OSTi meTi ckHook(voi d)

File Called from Code enabled by
OS CPU_C.C OSTimeTick() OS CPU_HOOKS EN

Thisfunctioniscaled byOSTi neTi ck() whichinturniscalled whenever aclock tick occurs. OSTi meTi ckHook()
iscalled immediately upon entering OSTi meTi ck() toalow execution of time critical code in your application.

Y ou can also use this function to trigger an oscilloscope for debugging, trigger alogic analyzer, establish a breakpoint
for an emulator, and more.

Arguments
NONE

Returned Value




NONE

Notes/War nings
OSTi meTi ck() isgenerally called by an ISR and thus, the execution time of thetick ISR will beincreased by the code
you providein thisfunction. Interrupts may or may not be enabled when OSTi meTi ckHook (') iscalled depending

how the processor port has been implemented. If interrupts are disable, this function will affect interrupt latency.

Example

voi d OSTi neTi ckHook (voi d)
{

}

/* Trigger an oscill oscope */




Chapter 9

80x86, Large Model Port

Thischapter describeshow p C/OS-I1 has been ported to the Intel 80x86 series of processors running inReal Mode and
for theLarge Model. This port appliesto the following CPUs:

80186
80286
80386
80486
Pentium
Pentiuml|

It turns out that the port can run on most 80x86 compatible CPU manufactured by AMD, Cyrix, NEC (V-series) and
others. | used Intel herein ageneric fashion. There are literally millions of 80x86 CPU being sold each year. Most of
these end up i n desktop type computers but, agrowing number of processorsare making their way in embedded systems.
The fastest processors (i.e. the Pentiumills) should reach 1000 MHz by year 2000.

Most C compiler that support 80x86 processors running in real mode offer different memory models, each suited for a
different program and datasize. Each model uses memory differently. The Large Model allows your application (code
and data) to reside in a 1 MegaBytes memory space. Pointers in this model require 32-bits although they can only
addressupto 1 MegaBytes! Thenext sectionwill show why a32-bit pointer inthismodel can only address 20-bits worth
of memory.

This port can also be adapted to run on the 8086 processor but requires that you replace the use of he PUSHA
instruction with the proper number of PUSHinstructions.

Figure 9-1 shows the programming model of an 80x86 processor running in real mode. All registers are 16-bit wide and
they all need to be saved during a context switch.



15 0
AX AH AL

BX BH BL
CX CH CL

General Purpose Register:

DX DH DL

15 0

BP
SP

Pointers

Sl
DI

Index Registers

15 0
IP Instruction Pointer

SW ofod IF|TF|sF|zd [aF] |PF| |[cH StatUS Word

15 0

CS
SS
DS
ES

Segment Registers

Figure 9-1, 80x86 Real-M ode Register Map

The 80x86 provides a clever mechanism to access up to 1 Mbytes of memory with its 16-bit registers. Memory
addressing relieson using asegment and anoffset register. Physical address calculation is done by shifting a segment
register by 4 (multiplyingit by 16) and adding one of six other registers (AX, BP,SP, Sl Dl or | P). Theresultisa
20-bit addresswhich can accessupto 1 Mbytes. Figure9-2 showshow theregistersare combined. Each segment points
to ablock of 16 memory locations called aparagraph. A 16-bit segment register can point to any of 65,536 different
paragraphs of 16 bytes and thus address 1,048,576 bytes. Because the offset is also 16-bit, a single segment of code
cannot exceed 64 Kbytes. In practice, however, programs are made up of many smaller segments.
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Figure 9-2, Addressing with a Segment and an Offset

The Code Segmentregister (CS) pointsto the base of the program currently executing, the Stack Segment register (SS)
points to the base of the stack, the Data Segment register (DS) points to the base of one data area while the Extra
Segment register (ES) pointsto the base of another areawhere datamay be stored. Each timethe CPU needsto generate
amemory address, one of the segment registers is automatically chosen and its contents is added to an offset. Itis
commonto find the segment-colon-offset notation in literature to reference amemory location. For example, 1000:00FF
represents physical memory location OX100FF.

9.00 Development Tools

| used the Borland C/C++ V3.1 compiler along with the Borland Turbo Assembler to port and test the 80x86 port. The
compiler generatesreentrant code and providesin-ine assembly language instructionsto be inserted in C code. Once
compiled, the code is executed on a PC. | tested the code on a Pentiunill based computer running the Microsoft
Windows 95 operating system. Infact, | configured the compiler to generate aDOS executable whichwasruninaDOS
window.

Thisport will run on most C compilersaslong asthe compiler can generate Real-Mode code. Y ou will most likely have
to change some of the compiler options and assembler directives.

9.01 Directoriesand Files

Theinstallation program provided onthe distribution diskette will install the port for the Intel 80x86 (Real Mode, Large
Model) on your hard disk. The port isfound under the\ SOFTWARE\ uCOS- | |\ | X86L directory on your

hard drive. Thedirectory name standsfor Intel 80x86 Real Mode, Large Model. The source code for the port isfound
inthe following filess OS_CPU. H OS_CPU_C. Cand,0S_CPU_A. ASM

9.02 INCLUDES.H

| NCLUDES. HisaMASTERincludefileandisfoundatthetopof all .Cfiles. | NCLUDES. Hallowsevery .Cfile
in your project to be written without concerns about which header file will actually be needed. The only drawback to
having amaster includefileisthatl NCLUDES. H may include header files that are not pertinent to the actual .C file
being compiled. This means that each file will require extra time to compile. This inconvenience is offset by code



portability. Youcaneditl NCLUDES. Hto add your own header files but, your header files should be added at the
end of thelist. Listing 9.1 showsthe contentsof | NCLUDES. Hfor the 80x86 port.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i ncl ude <stdlib. h>
#i ncl ude <coni 0. h>
#i ncl ude <dos. h>

#i ncl ude <setj np. h>

#i ncl ude "\sof t ware\ucos-ii\ix86l\os_cpu.h"
#i ncl ude "os_cfg.h"

#i ncl ude "\sof t war e\ bl ocks\ pc\ source\ pc. h"

#i ncl ude "\sof t ware\ ucos-ii\source\ucos_ii.h"

Listing 9.1, INCLUDES.H
9.03 OS CPU.H

OS_CPU. H contains processor and implementation specific #def i nes constants, macros, and t ypedef s.
OS_ CPU. Hfor the 80x86 port is shown in listing 9.2.

#i fdef OS5 _CPU GLCBALS
#def i ne C8_CPU_EXT

#el se

#define OS5 _CPU EXT extern
#endi f

/*
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* DATA TYPES

* (Conpi | er Specific)

B Y

*/

typedef unsigned char BOCLEAN

typedef unsigned char | NT8U /* Wsigned 8 bit quantity */ (1)
typedef signed char |NT8S; /* Signed 8 bit quantity */
typedef unsigned int I NT16U; /* Unsigned 16 bit quantity */
typedef signed int | NT16S; /* Signed 16 bit quantity */
typedef unsigned |ong |NI32y /* Unsigned 32 bit quantity #f]
typedef signed long |NT32S /* Signed 32 bit quantity */
typedef fl oat FP32; /* Single precision floating point */
typedef doubl e FP64; /* Doubl e precision floating point */
typedef unsigned int CB_STK; /* Each stack entry is 16-bit w de */
#def i ne BYTE I NT8S /* Define data types for backward conpatibility ... */
#def i ne UBYTE | NT8U /* ... toudCs V1.xx. Not actually needed for ... */
#defi ne WORD I NT16S /* ... ugdGCs-11. */
#def i ne UWCRD I NT16U

#define LONG I NT32S

#def i ne ULONG I NT32U

/*

* Intel 80x86 (Real - Mbde, Large Mdel )

*
* Method #1: Disable/Enable interrupts using sinple instructions. After critical section, interrupts

* will be enabled even if they were disabled before entering the critical section. You MIJST
* change the constant in G5 CPU A ASM function OSInt@xSw) from10 to 8.




* Method #2: D sable/Enable interrupts bv preservina the state of interruots. In other words. if
* interrupts were disabled before entering the critical section, they will be disabled when

* leaving the critical section. You MJST change the constant in G5 CPU A ASM function

* BIntaxSW) from8 to 10.
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#define OS CRITICAL METHOD 2

#i f 05 CRITICAL_ METHOD == 1

#define OS5 ENTER CRTICAL() asm QLI /* Disable interrupts */ (2)
#define OS5 EXIT_CR Tl CAL() asm STI /* Enable interrupts */
#endi f

#if O5_CRITICAL_METHOD == 2

#define OB ENTER CRITICAL() asm{PUSHF CLI} /* Disable interrupts */
#define OS5 _EXIT_CR Tl CAL() asm PCPF /* Enable interrupts */
#endi f

/*

B T L rrraaeeer
* Intel 80x86 (Real - Mde, Large Mbdel) M scel | aneous
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*/

#define OB STK GROMH 1 /* Stack grows fromH GH to LOVNnenmory on 80x86 */ (3)
#define uCOB 0x80 /* Interrupt vector # used for context swtch */ (4)
#define OS5 _TASK SW) asm |INT uCOs (5)
/*

e

* Q.CBAL VAR ABLES
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*/

OB CPU EXT I NT8U CsTi ckDOsCQr; /* Counter used to invoke DOS s tick handler every 'n' ticks */ (6)

Listing 9.2, 0S CPU.H

9.03.01 OS CPU.H, Data Types

Because different microprocessors have different word length, the port of u C/OS-11 includes a series of type definitions
that ensures portability L9.2(1). With the Borland C/C++ compiler, ani Nt is16-bit and al ONQ is32-hit. Also, for

your convenience, | included floating-point data types even though p C/OS-I1 doesn’t make use of floating-point.

A stack entry for the 80x86 processor runningininreal-modeis 16-bit wide and thus, OS_ STKiis declared accordingly
for the Borland C/C++ compiler. All task stacks MUST be declared usingOS_ STK asiits data type.




9.03.02 OS CPU.H, Critical Sections

M C/OSHI like al reaHtime kernels need to disable interrupts in order to access critical sections of code, and re-enable
interrupts when done. This alows pu C/OS-1I to protect critical code from being entered simultaneously from either
multiple tasks or ISRs. Because the Borland C/C++ compiler supports in-line assembly language, it's quite easy to
specify the instructions to disable and enable interrupts. p C/OS-I1 defines the two macros to disable and enable
interrupts: OS_ENTER_CRI Tl CAL() andOS_EXI T_CRI Tl CAL( ) , respectively. | actually provide
you withtwo methods of disabling and enablinginterruptsL9.2(2). Themethod used is established by thettdef i ne
macroOS_CRI TI CAL_ METHOD which can either be setto 1 or 2. For thetests, | chose method #2 but it’s up to
you to decide which oneis best for your application.

Method #1:

Thefirst and simplest way to implement these two macros is to invoke the processor instruction to disable interrupts
(CLI') for OS_ENTER_CRI TI CAL() and the enable interrupts instruction (STI) for
OS_EXI T_CRI TI CAL() . Thereis, however, alittle problem with this scenario. If you called the p C/OSHI
function with interrupts disabled then, upon return from p C/OSH 1, interrupts would be enabled! If you had interrupts
disabled, you may have wanted them to be disabled upon return from the p C/OS|I1 function. In this case, the above
implementationwould not beadequate. |f youdon't carein your application whether interruptsare enabled after calling

ap C/OS|1 servicethen, you should opt for thismethod because of performance. If you chosethismethod, you will need
to change the constant inOSI Nt Ct XSW() from 10to0 8 (seeOS_CPU_A. ASM)!

Method #2:

The second way toimplementOS_ENTER_CRI Tl CAL( ) isto savetheinterrupt disable status onto the stack
and then, disableinterrupts. Thisisaccomplished on the 80x86 by executingthe PUSHF instruction followed by the
CLI instruction. OS_EXI T_CRI TI CAL() simply needs to execute a POPF instruction to restore the
original contents of the processor’'s SW register. Using this scheme, if you called a p C/OS-1I service with either

interrupts enabled or disabled then, the status would be preserved acrossthe call. A few words of caution however, if
you cal a pC/OS|I service with interrupts disabled, you are potentially extending the interrupt latency of your

application. Also, your application will ‘crash’ if you have interrupts disabled before calling a service such as
OSTi meDl y () . Thiswill happen because the task will be suspended until time expires but, because interrupts are
disabled, you would never servicethetick interrupt! Obviously, all the PEND calls are also subject to this problem so,
becareful. Asageneral rule, you should awayscall u C/OS-11 services with interrupts enabled! If you want to preserve
the interrupt disable status across p C/OS-I1 service callsthen obviously this method is for you but be careful.

9.03.03 OS CPU.H, Stack Growth

The stack on an 80x86 processor grows from high-memory to low-memory which meansthat OS_STK_GROWI'H
must be set to 1 L.9.2(3).

9.03.04 OS CPU.H, 0S TASK_SW()

Inu C/OSH1, the stack framefor aready task alwayslooksasif aninterrupt hasjust occurred and all processor registers
were saved onto it. To switch context, OS_TASK_SW) thus needs to simulate an interrupt L9.2(5). The 80x86
provides 256 software interrupts to accomplish this. The interrupt service routine (ISR) (also called the ‘exception
handler’) MUST vector to the assembly language function OSCt xSw( ) (seeOS_CPU_A. ASM).

Because | tested the code on a PC, | decided to use interrupt number 128 (i.e. 0x80) becausel found it to be available
L9.2(4). Actualy, theoriginal PC used interrupts 0x80 through OxFO for the BASICinterpreter. Few if any PCsnowadays
comewithaBASIC interpreter builtin so, it should be save to these vectors. Optionally, you can also use vectors 0x4B



to Ox5B, 0x5D to 0x66, or 0x68 to Ox6F. If you use this port on an embedded processor such as the 80186 processor you
will most likely not be as restricted in your choice of vectors.

9.03.05 OS CPU.H, Tick Rate

Thetick ratefor an RTOSshould generally be set between 10 and 100 Hz. It isalways preferable (but not hecessary) to
set thetick rate to a‘round number’. Unfortunately, on the PC, the default tick rateis 18.20648 Hz which is not what |

would call anice‘round number’. Forthisport, | decided to changethetick rate of the PC from the standard 18.20648 Hz
t0 200 Hz (i.e. 5 mS between ticks). There aretwo reasonsto do this. First, 200 Hz happensto be about 11 times faster
than 18.20648 Hz. Thiswill allow usto‘chain’ into DOS once every 11 ticks. In DOS, thetick handler isresponsible for
some ‘system’ maintenance which is expected to happen every 54.93 mS. The second reason isto have 5.00 mStime
resolution for time delays and timeouts. |f you are running the example code on an 80386 PC, you may find that the
overhead of the 200 Hz may be unacceptable. On aPentium:-I1 processor, however, 200 Hz isnot likely to be a problem.

Thisbringsustothelast statementinOS_ CPU. H which declares an 8-bit variable (OSTi ¢k DOSC ) that will

keep track of the number of times the ticker is called. Every 11" time, the DOS tick handler will be called L9.2(6).
OSTi ckDOSCt 1 isusedin OS_CPU_A. ASMand really only appliesto a PC environment. Y ou would most

likely not usethis schemeif you wereto design an embedded system around anon-PC architecture because you would
set the tick rate to the proper valuein the first place.

9.04 OS CPU_A.ASM

A nC/OSHI port requires that you write four fairly simple assembly language functions:

0SSt art Hi ghRdy()
OSCt xSwW()

OSI nt Ct xSwW()
OSTi ckl SR()

9.04.01 OS CPU_A.ASM, OSStartHighRdy()

This function is called by OSSt ar t () to start the highest priority task ready-to-run. Before you can call
OSSt art () , however, you MUST have created at least one of your tasks (see OSTaskCr eat e() and
OSTaskCr eat eExt ()). OSSt art H ghRdy () assumes that OSTCBHi ghRdy points to the
task control block of the task with the highest priority. Figure 9-3 shows the stack frame for an 80x86 real-mode task
created by ether OSTaskCreate() or OSTaskCreateExt(). As can be seen,
OSTCBHi ghRdy - >OSTCBSt kPt r pointsto the task’s top-of-stack.
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Figure 9-3, 80x86 Stack frame when task is created

The codefor OSSt ar t Hi ghRdy () isshowninlisting 9.3.

_OsSSt art H ghRdy PROC FAR

MOV AX, SEG _OSTCBHi ghRdy ; Rel oad DS
MoV DS, AX ;

LES BX, DWORD PTR DS: OSTCBHi ghRdy ; SS: SP = OSTCBHi ghRdy->0STCBSt kPt r (1)
MOV SS, ES:[BX+2] -
MOV SP, ES: [ BX+0]

POP DS ; Load task's context (2)
POP ES ] (3)
POPA ; (4)
| RET i Run task (5)

_OSst art H ghRdy ENDP

Listing 9.3, OSStartHighRdy()

To start the task, OSSt ar t Hi ghRdy () simply needs to retrieve and load the stack pointer from the task’s
OS_TCB L93(1), execute a POP DS 193, POP ES L1933, POPA L934) and | RET




L9.3(5) instructions. | decided to storethe stack pointer at the beginning of thetask control block (i.e.its OS_TCB)
to make it easier to access from assembly language.

Upon executing thel RET instruction, the task code is resumed and the stack pointer (i.e. SS:SP) is pointing at the
return address of thetask asif thetask wascalled by anormal function. SS:SP+4 pointsto theargumentP dat a which
is passed to the task..

9.04.02 OS CPU_A.ASM, OSCtxSw()

A task level context switch isaccomplished by executing a software interrupt instruction on the 80x86 processor. The
interrupt service routine MUST vector to OSCt X SW( ) . The sequence of events that leads i C/OS-I1 to vector to

OSCt XxSW( ) isasfollows. Thecurrenttask callsaserviceprovided by p C/OS- 1 which causes a higher priority task
to beready-to-run. Attheend of theservicecall, u C/OS-l1 callsthefunction OSSched() which concludes that the
current task isnolonger the most important task torun. OSSched (') loads the address of the highest priority task
into OSTCBHi ghRdy and then executes the software interrupt instruction by invoking the macro
OS_TASK_SW() . Note that the variabhle OSTCBCuUTr already contains a pointer to the current task’s Task
Control Block, OS_TCB. The code for OSCt XSW( ) is shown in listing 9.4. The numbers in parenthesis
corresponds to the enumerated description that follows.

_ OSCt xSw PROC FAR ; (1)
PUSHA ; Save current task's context (2)

PUSH ES ; (3)

PUSH DS ; (4)

MOV AX, SEG _OSTCBCur ; Reload DS in case it was altered
MoV DS, AX ;

LES BX, DWORD PTR DS: _OSTCBCur . OSTCBCur- >OSTCBSt kPtr = SS: SP (5)
MOV ES: [ BX+2], SS ;
MOV ES: [ BX+0], SP

CALL FAR PTR _OSTaskSwHook (6)

MOV AX, WORD PTR DS: OSTCBHi ghRdy+2 ; OSTCBCur = OSTCBHi ghRdy (7)
MOV DX, WORD PTR DS: OSTCBHi ghRdy ;
MOV WORD PTR DS: OSTCBCur +2, AX
MOV WORD PTR DS: OSTCBCur, DX

MOV AL, BYTE PTRDS: OSPri oHi ghRdy ; OSPrioCur = OSPri oHi ghRdy (8)
MOV BYTE PTR DS: _OSPri oCur, AL

LES BX, DWORD PTR DS:_OSTCBHi ghRdy ; SS: SP = OSTCBHi ghRdy- >OSTCBSt kPt r (9)
MOV SS, ES: [ BX+2] :
MV  SP, ES:[BX]

POP DS ; Load new task's context (10)
POP ES ; (11)
POPA ; (12)
| RET ; Return to new task (13)

__OSCt xSw ENDP

Listing 9.4, OSCtxSw()




Figure 9-4 showsthe stack frames of the task being suspended and the task being resumed. On the 80x86 processor, the
software interrupt instruction forces the SW register to be pushed onto the current task’s stack followed by the return
address(segment and offset) of thetask that executed the | NT instruction F9-4(1) & L9.4(1) (i.e. the task that invoked
OS_TASK_SW() ). Tosavetherest of thetask’s context, the PUSHA F9-4(2) & L9.4(2), PUSH ES Fo-4(3) &

L9.4(3) and PUSH DS Fo-4(4) & L9.4(4) instructions are executed. To finish saving the context of the task is being
suspended, OSCt X SW( ) savesthe SSand SPregistersinitsOS_TCB Fo4(5) & L9.4(5). It isimportant that the
SSregister besavedfirst. Intel guarantiesthatinterruptswill bedisabled f or the nextinstruction. Thismeansthat saving
of SSand SP are performed indivisibly.
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Figure 9-4, 80x86 Stack frames during a task level context switch

The user definable task switch hook (OSTaskSwHOOK() ) is then caled L9.4(6). Note that when
OSTaskSwHook() is called, OSTCBCur points to the current task's OS_TCB while
OSTCBHi ghRdy points to the new task’'s OS_TCB. You can thus access each task's OS_TCB from
OSTask SwHook () . If you never intend to use the context switch hook, you can comment out the call which
would save you afew clock cycles during the context switch.

UponreturnfromOSTask SwHook () ,OSTCBHi ghRdy isthen copied to OSTCBCUr because the new
task will now also bethe current task L9.4(7). Also, OSPr i oHi ghRdy iscopiedto OSPr i oCur for the same
reason L9.4(8). At thispoint, OSCt X SW( ) can load the processor’s registers with the new task’s context. Thisis
doneby first retrieving the SS and SP registers fromthe new task's OS_TCB F9-4(6) & L9.4(9). Again, it isimportant
that the SSregister berestored first. Intel guarantiesthat interruptswill be disabled for the next instruction. Thismeans
that restoring of SSand SP are performed indivisibly. The other registersare pulled from the stack by executing a POP
DS Fo-4(7) & L9.4(10),aPOP ES F9-4(8) & L9.4(11), aPOPA F9-4(9) & L9.4(12) andfinally an | RET Fo4(10) &
L9.4(13) instruction. The task code resumes once thel RET instruction completes.



Y ou should note that interrupts are disabled during OSCt X SW( ) and also during execution of the user definable
function OSTask SwHook () .

90.04.03 OS_CPU_A.ASM, OSIntCtxSw()

OSI nt Ct XSW() isafunction that is called by OSI Nt Exi t () to perform a context switch from an ISR
(Interrupt Service Routine). Because OSI Nt Ct X SW( ) iscalled from an ISR, it is assumed that all the processor
registersare already properly saved onto theinterrupted task’s stack. In fact, there are more things on the stack frame
thanweneed. OSI Nt Ct X SW( ) will thushaveto clean upthestack sot hat the interrupted task is left with just the
proper stack frame content.

The code shown in listing 9.5 isidentical toOSCt X SW( ) except for two things. First, thereis no need to save the
registers (i.e. use PUSHA PUSH ES and PUSH DS) onto the stack because it is assumed that the beginning of
the ISR has done that. Second, OSI Nt Ct X SW( ) needs to adjust the stack pointer so that the stack frame only
contains the task’s context. To understand what is happening, refer also to figure 9-5 for the following description.

_OSIntaxSw PROC  FAR
; ; lgnore calls to GBlntExit and C8I nt & xSw

ADD SP, 8 ; (Uncomment if OS5 CRITICAL METHID is 1, see G5 CPU. H) (1)
ADD SP, 10 ; (Uncomment if B CRITICAL_METHOD is 2, see G5 CPU. H)

MOV AX, SEG _CsTCBQUr ; Reload DS in case it was altered

MV DS, AX ;

LES  BX, DWRD PTR DS:_CSTCBQur ;. OSTCBQUr - >CBTCBSt kPt r = SS: SP (2
MV  ES [BX+2], SS :
MV  ES [BX+0], SP

CALL  FAR PTR _CSTaskSwHook (3)

MV AX, WRD PTR DS: _OSTCBH ghRdy+2 ; CSTCBCQur = OSTCBH ghRdy (4)
MV DX, WRD PTR DS: _OSTCBH ghRdy

MV WORD PTR DS: _OBTCBQur +2, AX

MV WIRD PTR DS: _OSTCBQur, DX

MV AL, BYTE PTR DS: _C8PrioH ghRdy ; CBPrioCQur = CBPrioH ghRdy (5)
MOV BYTE PTR DS: _OSPri oQur, AL

LES  BX, DWRD PTR DS: _CSTCBH ghRdy ; SS:SP = OSTCBH ghRdy- >CSTCBSt kPt r (6)
MV SS, ES: [ BXx+2] ;

MV  SP, ES[BX

PCP bs ; Load new task's context (7)
PCP  ES : (8)
PCPA 3 (9)
| RET ; Return to new task (10)

_C8l nt & xSw ENDP

Listing 9.5, OSI ntCtxSw()

Assuming that the processor recognizes an interrupt, the processor completes the current instruction and initiates an
interrupt handling procedure. Thisconsist of automatically pushing the processor statusregister followed by thereturn
address of the interrupted task onto the stack.
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Figure 9-5, 80x86 Stack frames during an interrupt level context switch

The CPU then vectorsto the proper ISR. u C/OS-11 requires that your ISR begins by saving the rest of the processor
registersF9-5(1). Oncetheregistersaresaved, i C/OS-11 requiresthat you either call OSI nt Ent er (1) or, that you
increment the global variable OSI Nt Nest i Ng by one. At this point, the interrupted task’s stack frame only
contains the register contents of the interrupted task. The ISR can now start servicing the interrupting device and
possibly, make a higher priority task ready. This would occur if the ISR sends a message to a task (by calling
OSMooxPost () o OSQPost (31) resume a task (by caling OSTaskResume() ), invokes
OSTi meTi ck() orOSTi meDl yResunme( ) . Let usassume that a higher priority task is made ready to
run.

L C/OSH1 requires that your ISR callsOSI nt EXi t () when the ISR completes servicing the interrupting device.
OSI nt Exi t () basicallytell p C/OS-I1 that it' stimetoreturn back t o task level code. Thecall toOSI nt Exi t ()
causes the return address of the caller to be pushed onto the interrupted task’s stack F9-5(2).

OSI nt Exi t () starts by disabling interrupts because it needs to execute critical code. Depending on how
OS_ENTER_CR TI CAL() is implemented (see section 9.03.02), the processor's status register could be
pushed ontotheinterruptedtask’ sstack F9-5(3). OSI nt Exi t () noticesthat the interrupted task is no longer the
task that needs to run because a higher priority task is now ready. In this case, the pointer OSTCBHiI ghRdy is
madeto pointtothenew task's OS_TCB andOSI nt Exi t () calsOSI nt Ct XSW( ) to perform the context
switch. CallingOSI nt Ct X SW( ) causesthereturn addressto be pushed onto theinterrupted task’s stack F9-5(4)

Becausewe are switching context, weonly want to leaveitem F9-5(1) on the stack and ignoreitems F9-5(2), F9-5(3), and
F9-5(4). Thisisaccomplished by addinga‘constant’ to the stack pointer F9-5(5) & L9.5(1). When using Method #2 for
OS_ENTER_CRI TI CAL( ) , this constant needs to be 10. If you decide to use Method #1, however, you will



need to change the constant to 8. The actual value of this constant depends on the compiler and compiler options.
Specifically, adifferent compiler may allocate variables for OSI Nt EX1 t (1) . Once the stack is adjusted, the new
stack pointer can be saved into theOS_ TCB of thetask being switched out F9-5(6) & L9.5(2). It isimportant that the SS
register be saved first. Intel guarantiesthat interruptswill be disabled for the next instruction. This means that saving
of SSand SPareperformedindivisibly. OSI nt Ct X SW( ) isthe only function in pt C/OS-1 (and also p1 C/OS) that is

compiler specific and hasgenerated moree-mail than any other aspect of u C/OS. | f your port appearsto crash after afew
context switches then, you should suspect that the stack is not being properly adjusted in OSI nt Ct xSw( ) .

Theuser definabletask switchhook (OSTas k SWHo ok (') ) isthen called L9.5(3). Notethat OSTCBCuUTr points
tothecurrenttask'sOS_TCB whileOSTCBHI ghRdY pointstothenewtask’s OS_TCB. Y ou can thus access
each task’'s OS_TCB from OSTask SwHook () . If you never intend to use the context switch hook, you can
comment out the call which would save you afew clock cycles during the context switch.

Uponreturnfrom OSTask SwHook () , OSTCBHi ghRdY iscopied toOSTCBCUr because the new task
will now also be the current task L9.5(4). Also, OSPr i oHi ghRdY is copied to OSPri oCur for the same
reason L9.5(5). At this point, OSCt X SW() canloadthe processor’sregisters with the new task’s context. Thisis
doneby first retrieving the SS and SP registersfrom the new task’'s OS_TCB F9-5(7) & L9.5(6). Again, it isimportant

that the SSregister berestored first. Intel guarantiesthat interruptswill be disabled for the next instruction. This means
that restoring of SSand SP are performed indivisibly. The other registersare pulled from the stack by executing a POP
DS Fo5(8) & L95(7),aPOP ES Fa-5(9) & L95(8), aPOPAF9-510) & L95(9) and finally anl RET Fo-5(11) &

L.9.5(10) instruction. The task code resumes oncethel RET instruction completes.

You should note that interrupts are disabled during OSI Nt Ct XSW( ) and also during execution of the user
definable function OSTas k SwHook () .

9.0404 OS CPU_A.ASM, OSTi ckl SR()

As mentioned in section 9.03.05, the tick rate of an RTOS should be set between 10 and 100 Hz. On the PC, the ticker
occursevery 54.93mS (18.20648 Hz) and is obtained by ahardwaretimer that interruptsthe CPU. Y ou should recall that
| decided toreprogramthetick rateto 200 Hz. Theticker onthe PCisassigned to vector 0x08 but u C/OS-11 needs to have
it ‘redefined’ so that it vectorsto OSTi CKIl SR() instead. Because of this, the PC's tick handler is saved (see
PC. C,PC_DOSSaveRet ur n() ) in vector 129 (0x81). To satisfy DOS, however, the PC's handler will be
called every 54.93 mS (described shortly). Figure 9-6 shows the contents of the interrupt vector table (IVT) before and
after ingtalling pu C/OS-II.



Before (DOS only) After ( /OS-llinstalled)

Interrupt Vector Table Interrupt Vector Table
(IVT) (IVT)
0x00 0x00
0x01 0x01
0x02 0x02
0x03 0x03
0x04 0x04
0x05 0x05
0x06 0x06
0x07 0x07
0x08 ®——— DOS Tick Handler 0x08 &—— > OSTickISR()
(18.20648 Hz) (200 Hz):
Every 11 ticks, do 'INT 0x81'
OX7F OX7F
0x80 ®——— Undefined 0x80 & ———» OSCtxSw()
0x81 &—— ¥ Undefined 0x81 & ————» DOS Tick Handler

Figure 9-6, PC’sInterrupt Vector Table(IVT)

With u C/OSHI, it is very important that you enable ticker interrupts AFTER multitasking has started, i.e. after calling
OSSt art () . Inthecaseof thePC, however, ticker interrl_thsareaIready occuring beforeyou actually execute your
L C/OSH1 application. To prevent thelSRfrominvokingOSTi CK1 SR(') until u C/OSH1 isready, you need to do the
following:



PC_DOSSaveReturn() (see PC.C) which is called by main() needs to:
Cet the address of the interrupt handler for the DOS ticker;
Rel ocate the DOS ticker at |ocation 0x81;
mai n() needs to:
Install the context switch vector (i.e. OSCtxSw()) at vector 0x80;
Create at | east one application task;
Call Osstart() when ready to nmultitask;
The first task to execute needs to:
Install OSTickl SR() at vector 0x08;
Change the tick rate from 18.20648 Hz to 200 Hz;

Thetick handler onthe PC issomewhat tricky so | decided to explain it using the pseudo code showninlisting 9.6. Like
dl pnC/OS-I1 1SRs, dltheregistersneed to be saved onto the current task’ sstack L9.6(1). Upon entering an ISR, you need
to tdl pC/OSII that you are starting an ISR by either calling OSI nt Ent er () or, directly incrementing
OSI nt Nest i ng L9.6 (2). You candirectly increment this variable because the 80x86 processor can perform this
operation indivisibly. Next, the counter OSTi cKDOSCt r isdecremented L9.6(3) and when it reaches 0, the DOS
ticker handler iscalled L9.6(4). Thishappensevery 54.93 mS. Ten timesout of 11, however, acommand is sent to the
Priority Interrupt Controller (i.e. the PIC) to clear theinterrupt L9.6(5). Notethat thereisno need to do thiswhenthe DOS
ticker is called because the DOS ticker directly clearstheinterrupt source. Next, wecall OSTi meTi ¢k () sothat
| C/OS 11 can update all thetasksthat are either waiting for timeto expire or are pending for some event to occur but with
atimeout L9.6(6). Atthecompletionof all ISRs, OSI Nt EXi t () iscaled L9.6(7). If ahigher priority task has been
made ready by this ISR (or any other nested ISRs) and, thisis the last nested ISR then OSI nt Exi t () will NOT
returntoOSTi CKI SR(') I Instead, restoring the processor’s context of the new task andissuinganl RET is done
by OSI nt Ct X SW( ) . If theISRisnot the last nested ISR or the SR did not cause ahigher priority task to be ready
then, OSI Nt EXi t () returns back to OSTi ckl SR()) . At this point, the processor registers are restored
L9.6(8) and the ISR returns to the interrupted source by executing an| RET instruction L9.6(9).

voi d OSTi ckl SR (voi d)

{
Save processor registers; (1)
OSI nt Nest i ng++; (2)
OSTi ckDOSCt r —; (3)
if (OSTickDOsCtr == 0) {
Chain into DOS by executing an ‘I NT 81H instruction; (4)
} else {
Send EO command to PIC (Priority Interrupt Controller); (5)
}
OSTi meTi ck() ; (6)
oSl nt Exi t(); (7)
Rest ore processor registers; (8)
Execute a return frominterrupt instruction (IRET); (9)
}

Listing 9.6, Pseudo code for OSTicklSR()




Thiscodefor OSTi ¢kl SR() isshownin listing 9.7 for reference.

_OSTi ckl SR PROC FAR

PUSHA ; Save interrupted task's context
PUSH ES

PUSH DS

MoV AX, SEG _OSTi ckDOSCt r ; Rel oad DS

MoV DS, AX
I NC BYTE PTR _OsSI nt Nesti ng ; Notify uC/GOs-11 of ISR

DEC BYTE PTR DS: _OSTi ckDOSCt r
CwP BYTE PTR DS: _OSTi ckDOSCtr, O

JNE SHORT _OSTi ckl SR1 ; Every 11 ticks (~199.99 Hz), chain into
DOS
MoV BYTE PTR DS: _OSTi ckDOSCtr, 11
I NT 081H ; Chain into DOS's tick ISR
JMWP SHORT _OSTi ckl SR2
_OSTi ckl SR1:
MOV AL, 20H ; Move EO code into AL.
MoV DX, 20H ; Address of 8259 PIC in DX
out DX, AL ; Send EO to PICif not processing DOS timer.
__OSTi ckl SR2:
CALL FAR PTR OSTi meTi ck ; Process systemtick
CALL FAR PTR _OSI nt Exi t ; Notify uC/GCS-11 of end of ISR
POP DS ; Restore interrupted task's context
POP ES
POPA
| RET ; Return to interrupted task

_OSTi ckl SR ENDP

Listing 9.6, OSTicklSR()

You can simplify OSTi ¢kl SR() by not increasing the tick rate from 18.20648 Hz to 200 Hz. The pseudo code
showninlisting 9.7 contains the stepsthat the tick 1SR would need to take. The ISR still needsto save all theregisters
ontothecurrent task’s stack L9.7(1) andincrementOSI nt Nest i ng L9.7(2). Next, theDOSticker handler is called
L9.7 (3). Notethat thereisno need to clear the interrupt ourselves because thisis handled by the DOSticker. Wethen
cal OSTi meTi ck() sothat pC/OSI can update all the tasks that are either waiting for time to expire or are
pending for some event to occur but with a timeout L9.7 (4). When you are done servicing the ISR, you call

OSI nt Exi t () L9.7(5). Finaly, the processor registers are restored L9.7 (6) and the | SR returns to the interrupted
source by executing an | RET instruction L9.7 (7). Note that you MUST NOT change the tick rate by calling
PC_Set Ti ckRat e() if youaretousethisversion of thecode. Y ouwill also haveto changethe configuration
constant OS_TI CKS_PER_SEC(see OS_CFG. H) from 200to 18!




voi d OSTi ckl SR (voi d)

{
Save processor registers; (1)
OSI nt Nest i ng++; (2)
Chain into DOS by executing an ‘I NT 81H instruction; (3)
OSTi meTi ck() ; (4)
OSI nt Exi t(); (5)
Rest ore processor registers; (6)
Execute a return frominterrupt instruction (lRET); (7)

}

Listing 9.7, Pseudo code for 18.2 Hz OSTickl SR()

The new codefor OSTi ¢kl SR() would look as shown in listing 9.8.

_OSTi ckl SR PROC FAR

PUSHA ; Save interrupted task's context
PUSH ES

PUSH DS}

MOV AX, SEG _OSI nt Nesti ng ; Rel oad DS

MOV DS, AX

I NC BYTE PTR _OSI nt Nesti ng ; Notify uC/OS-11 of ISR

I NT 081H ; Chain into DOS's tick ISR

CALL FAR PTR _OSTi meTi ck ; Process systemtick

CALL FAR PTR _OSI nt Exi t ; Notify uC/OS-11 of end of ISR

POP DS ; Restore interrupted task's context
POP ES

POPA

| RET ; Return to interrupted task

_OSTi ckl SR ENDP

Listing 9.8, 18.2 Hz version of OSTicklSR()

9.05 OS CPU_C.C

A L C/OSHI port requires that you write six fairly simple C functions:

OSTaskSt klnit ()
OSTaskCr eat eHook()
OSTaskDel Hook()
OSTaskSwHook()
OSTaskSt at Hook ()
OSTi meTi ckHook()




Theonly functionthat isactually necessary isOSTask St k1 ni t () . Theother fivefunctionsMUST be declared
but don’t need to contain any code inside them. | didn’t put any code in these five functionsin OS_CPU_C. C
because | am assuming that they would be user defined. To that end, the #defi ne constant
OS_CPU_HOOKS_EN (seeOS_CFG. Hyissetto0. Todefinethecodein OS_CPU_C. C, you would need
to set OS_CPU_HOOKS_ENto1.

9.0501 OS CPU_C.C, OSTaskStkl nit()

ThisfunctioniscalledbyOSTaskCr eat e() andOSTaskCr eat eExt () toinitialize the stack frame of
atask sothat the stack looksasif aninterrupt just occurred and all the processor registerswere pushed onto that stack.
Figure9-7 showswhatOSTas k St k1 ni t (') will put onthestack of thetask being created. Notethat thediagram
doesn’t show the stack frame of the code callingOSTask St kI ni t () but instead, the stack frame of the task
being created.

LOW MEMORY
Simulate PUSHDS ~————~ DS = Current DS |<-- Top-Of-Stack
Simulate PUSHES 73 ES = 0x4444
DI = 0x3333
SI = 0x2222
BP = 0x1111
Simulate PUSHA g; = Sﬁgggg
DX = 0xDDDD A
CX = 0xCcce !
AXOF,': ?’;‘S“k“ a | Stack Growth
Simulate Interrupt ~ —— SEG task I
\ SW = 0x0202 '
OFF_t ask
. SEG t ask
Simulate call to task OFE pdat a
N SEG pdat a <——ptos
HIGH MEMORY

Figure 9-7, Stack frame initialization with ‘pdata’ passed on the stack

Whenyou createatask, you specify to OSTask Cr eat e() orOSTaskCr eat eExt () the start address
of thetask (t @S K), youpassitapointer (pdat a), thetask’s top-of-stack (Pt 0S) and the task’s priority (PF i 0).
OSTaskCr eat eExt () requires additiona arguments but these are irrelevant in discussing
OSTaskSt kI ni t () . Toproperly initialize the stack frame, OSTask St k1 ni t () only requiresthe first three
arguments just mentioned (i.e. t ask, pdat a andpt 0S).



The code for OSTask St kI ni t () isshowninlisting 9.9.

voi d *CSTaskStkinit (void (*task)(void *pd), void *pdata, void *ptos, |NT16U opt)

I NT16U *st k;

opt = opt; /* 'opt' is not used, prevent warning */
stk = (I NT16U *) pt os; /* Load stack poi nter (1) */
*stk-- = (I NT16U) FP_SEQ pdat a) ; /* Simulate call to function w th argunent (2) */
*stk-- = (I NT16U) FP_CFF(pdat a) ;

*stk-- = (INT16U) FP_SEJt ask); /* Place return address of function call (3) */
*stk-- = (I NT16U) FP_CFF(t ask) ;

*st k-- = (I NT16U) 0x0202; /* SW= Interrupts enabl ed (4 */
*stk-- = (I NT16U) FP_SEQt ask) ; /* Put pointer to task on top of stack */
*stk-- = (I NT16U) FP_CFF(t ask) ;

*stk-- = (1 NT16U) OXAAAA; /* AX = OxAAAA (5) */
*stk-- = (I NT16U) 0xCOCC /* CX = 0xOQOCoC &
*stk-- = (I NT16U) OxDDDD; /* DX = OxDDDD */
*stk-- = (I NT16U) 0xBBBB; /* BX = 0xBBBB Ef
*stk-- = (I NT16U) 0x0000; /* SP = 0x0000 */
*stk-- = (I NT16U) Ox1111; /* BP = 0x1111 Sl
*st k-- = (I NT16U) 0x2222; /* Sl = 0x2222 */
*stk-- = (I NT16U) 0x3333; /* DI = 0x3333 */
*stk-- = (I NT16U) 0x4444; /* ES = 0x4444 =l
*stk = _DS; /* DS = Qurrent val ue of DS (6) */

return ((voi_d *) stk) ;

Listing 9.9, OSTaskStkinit()

OSTaskSt kI ni t () createsandinitializesalocal pointer to 16-hit el ementsbecause stack entriesare 16-bit wide
on the 80x86 L9.9(1). Notethat u C/OSH1 requires that the pointer Pt OS pointsto an empty stack entry.

The Borland C/C++ compiler passestheargumentpdat a on the stack instead of registers (at least with the compiler
options| selected). Becauseof this, P dat ais placed on the stack frame with the OFFSET and SEGMENT in the order
shown L9.9(2).

Theaddress of your task is placed on the stack next L9.9(3). In theory, this should be the return address of your task.
However, in 1 C/OSH I, atask must never return so, what is placed hereis not really critical.

The Status Word (SW along with the task address are placed on the stack L9.9(4) to simulate the behavior of the
processor in response to an interrupt. The SWregister is initialized to 0X0202 . This will allow the task to have
interrupts enabled when it starts. You can in fact start all your tasks with interrupts disabled by forcing the SWto
0x0002 instead. Therearenooptionsinu C/OS1 to selectively enable interrupts upon startup for some tasks and
disableinterrupts upon task startup on others. In other words, either all tasks have interrupts disabled upon startup or
all taskshavethem disabled. Y ou could, however, overcomethislimitation by passing the desired interrupt startup state
of atask by using pdat a. If you chose to have interrupts disabled, each task will need to enable them when they
execute. You will also haveto modifyOSTask! dl e() andOSTaskSt at () to enableinterrupts in those
functions. If you don't, your application will crash! | would thus recommend that you leave the SWinitialized to
0x0202 and haveinterrupts enabled when the task starts.

Next, theremaining registersare placed on the stack to simulatethePUSHA, PUSH ES and PUSH DS instructions
which areassumed to befound at the beginning of every ISR L9.9(5). Notethat theAX, BX, CX, DX SP,BP, Sl and
Dl registersare placed to satisfy the order of thePUSHA instruction. If you were to port this codeto a‘plain’ 8086




processor, you may want to simulate the PUSHA instruction or place the registersin aneater order. Y ou should also
note that each register has a unique value instead of all zeros. This can be useful for debugging. Also, the Borland
compiler supports‘ pseudo-registers’ (i.e. the_ DSkeyword notifiesthe compiler to obtain thevalueof the DS register)
whichin this caseis used to copy the current value of the DS register to the simulated stack frame L9.9(6).

Oncecompleted, OSTaskSt kI ni t () returnsthe address of the new top-of-stack. OSTask Cr eat e( )
or OSTaskCr eat eExt () will takethisaddressand saveitinthetask’'sOS_TCB.

9.05.02 OS CPU_C.C, OSTaskCreateHook()

Aspreviously mentioned, OS_CPU_C. Cdoes not define any code for this function.

9.0503 OS CPU_C.C, OSTaskDelHook()

Aspreviously mentioned, OS_CPU_C. Cdoes not define any code for this function.

9.05.04 OS CPU_C.C, OSTaskSwHook()
Aspre'wouslymentlonedos CPU C. Cdoesnot defineany codefor thisfunction. See Example#3 on how to use
thisfunction.

9.0505 OS CPU_C.C, OSTaskStatHook()

Aspreviously mentioned, OS_CPU_C. Cdoesnot defineany codefor thisfunction. See Example#3 for an example
on how to use thisfunction.

9.05.06 OS CPU_C.C, OSTimeTickHook()

As previously mentioned, OS_CPU_C. Cdoes not define any code for this function.



9.06 Memory requirements

Table 9.1 shows the amount of memory (both code and data space) used by p C/OS-II based on the value of
configuration constants. Data in this case means RAM and Code means ROM if p C/OS-1 is used in an embedded

The  spreadsheet is actually provided on the companion  diskette
(\ SC]:TV\ARE\ uCoS- 11\ 1 x86L\ DOC\ ROV RAM XLS). Y ouwill need Microsoft Excel for Office 97

(or higher) to usethisfile. The spreadsheet allows you to do ‘what-f’ scenarios based on the options you select.

) . CODE DATA

Configuration Parameters Value (Bytes) (Bytes)
OS_MAX_EVENTS 10 164
OS_MAX_MEM_PART 5 104
OS_MAX_QS 5 124
OS_MAX_TASKS 63 2925
OS_LOWEST_PRIO 63 264
OS_TASK_IDLE_STK_SIZE 512 1024
OS_TASK_STAT_EN 1 325 10
OS_TASK_STAT_STK_SIZE 512 1024
OS_CPU_HOOKS_EN 1 0
OS_MBOX_EN 1 600 (See OS_MAX_EVENTS)
OS_MEM_EN 1 725 (See OS_MAX_MEM_PART)
OS_Q_EN 1 1475 (See OS_MAX_QS)
OS_SEM_EN 1 475 (See OS_MAX_EVENTS)
OS_TASK_CHANGE_PRIO_EN 1 450 0
OS_TASK_CREATE_EN 1 225 1
OS_TASK_CREATE_EXT_EN 1 300 0
OS_TASK_DEL_EN 1 550 0
OS_TASK_SUSPEND_EN 1 525 0

/OS-Il Internals 2700 35
Total Application Stacks 0 0
Total Application RAM 0 0
TOTAL.: 8350 5675

Table 9.1, u C/OSI1 memory requirementsfor 80186.

The number of bytesin the CODE column have been rounded up to the nearest 25 bytes. | used the Borland C/C++
compiler V3.1 and the options were set to generate the fastest code. The number of bytes shown are not meant to be
accurate but are simp ly provided to give you arelative idea of how much code space each of the p C/OS-I11 group of
servicesrequire. For example, if you don’'t need message queue services (i.e. OS_Q_EN set to 0) then you will save
about 1475 bytes of code space. In thiscase, pC/OS-11 would only use up 6875 bytes of code space.



The DATA columnisnot asstraightforward. Y ou should notice that the stacks for both the idle task and the statistics
task have been set to 1024 (i.e. 1K) each. Based on your own requirements, thesenumber may be higher or lower. Asa
minimum, L C/OS-11 requires 35 bytes of RAM (U C/OS-II Internals) for internal data structures.

Table 9.2 shows how p C/OS-I1 can scale down the amount of memory required for smaller applications. In this case, |
only allowed 16 tasks but with 64 priority levels (0 to 63). Inthis case, your application will not have accessto:

- Messagemailboxe services (OS_MBOX_ENset to 0)

- Memory partition services (OS_MEM_EN et to 0)

- Changing task priorities (OS_TASK_CHANGE_PRI O_ENset to0)

- Theoldtask creation (OSTaskCr eat e( ) ) function (OS_TASK_CREATE_ENset to 0)
- Deleting task (OS_TASK_DEL_ ENset to 0)

- Suspending and Resuming tasks (OS_TASK_SUSPEND_EN set to 0)

Noticethat the CODE spacereduced by about 3K and the DATA spacereduced by over 2200 bytes! Most of theDATA
savingscomefrom the reduced number of OS_ T CBs needed because only 16 tasks are available. For the 80x86 large
model port, each OS_TCB eats up 45 bytes of RAM.

. . CODE DATA

Configuration Parameters Value (Bytes) (Bytes)
OS_MAX_EVENTS 10 164
OS_MAX_MEM_PART 5 0
OS_MAX_QS 5 124
OS_MAX_TASKS 16 792
OS_LOWEST_PRIO 63 264
OS_TASK_IDLE_STK_SIZE 512 1024
OS_TASK_STAT_EN 1 325 10
OS_TASK_STAT_STK_SIZE 512 1024
OS_CPU_HOOKS_EN 1 0
OS_MBOX_EN 0 0 (See OS_MAX_EVENTS)
OS_MEM_EN 0 0 (See OS_MAX_MEM_PART)
OS_Q_EN 1 1475 (See OS_MAX_QS)
OS_SEM_EN 1 475 (See OS_MAX_EVENTS)
OS_TASK_CHANGE_PRIO_EN 0 0 0
OS_TASK_CREATE_EN 0 0 1
OS_TASK_CREATE_EXT_EN 1 300 0
OS_TASK_DEL_EN 0 0 0
OS_TASK_SUSPEND_EN 0 0 0

/OS-Il Internals 2700 35
Total Application Stacks 0 0
Total Application RAM 0 0
TOTAL.: 5275 3438

Table 9.2, A scaled down pC/OS-I1 configuration.



9.07 Execution times

Tables 9.3 and 9.4 show the execution time for most u C/OS-11 functions. The values were obtained by having the
compiler generate assembly language code for the 80186 processor with the C source interleaved as comments. The
assembly code wasthen passed through the Microsoft MASM 6.11 assembl er with the option set so that the number of
cyclesfor each instruction getsincluded. | then added the number of instructions (thel column) and clock cycles (the
C column) for the code to obtain three values: the maximum amount of time interrupts are disabled for the service, the
minimum execution time of the service and its maximum. Asyou canimmagine, thisisavery tediousjob but worth the
effort. Giving you this information allows you to see the ‘cost’ impact of each function in terms of execution time.

Obviously, thisinformation hasvery little use unlessyou are using a80186 processor except for thefact that it givesyou
an ideaof therelative cost for each function.

Thenumber of clock cyclesweredivided by 33 (i.e. | assumed a33 MHz clock) to obtain the execution time of the service
inp S(i.e. thepS column). For the minimum and maximum times, | always assumed that the intended function of the
service was performed succesfully. | further assumed that the processor was able to run at the full bus speed (i.e.
without any wait states). On average, | determined that the 80186 requires 10 clock cycles per instruction!

For the 80186, maximum interrupt disable timeis 33.3 1 S (or 1100 clock cycles).
N/A meansthat the execution time for the function was not determined because | didn't believe they were critical.

| provided the column listing the number of instructions because you can determine theexecution time of the functions
for other x86 processorsif you have an ideaof the number of cyclesper instruction. For example, you could assumethat
a 80486 executes (on average) an instruction every 2 clock cycle (5 times faster than a80186). Also, if your 80486 was
running at 66 MHz instead of 33 MHz (2 times faster) then you could take the execution times listed in the tables and
dividethem al by 10.



Interrupts Disabled Minimum Maximum

Service [ c [ C | c
Miscellaneous
OSInit() N/A N/A N/A N/A N/A N/A N/A N/A | NIA
0SSchedLock() 4 34 1.0 7 87 2.6 7 87 2.6
0SSchedUnlock() 57 567 | 17.2 13 130 3.9 73 782 | 23.7
OSStart() 0 0 0.0 35 278 8.4 35 278 8.4
OSStatinit() N/A N/A N/A N/A N/A N/A N/A N/A | N/A
OSVersion() 0 0 0.0 2 19 0.6 2 19 0.6
Interrupt Management
OSIntEnter() 4 42 1.3 4 42 1.3 4 42 1.3
OSIntExit() 56 558 | 16.9 27 207 6.3 57 574 | 17.4
OSTickISR() 30 310 9.4 948 | 10803 | 327.4 | 2304 | 20620 | 624.8
Message Mailboxes
OSMboxAccept() 15 161 4.9 13 257 7.8 13 257 7.8
OSMboxCreate() 15 148 45 115 939 | 285 | 115 939 | 285
OSMboxPend() 68 567 | 17.2 28 317 9.6 184 | 1012 | 57.9
OSMboxPost() 84 747 | 22.6 24 305 9.2 152 | 1484 | 45.0
OSMboxQuery() 120 988 | 29.9 | 128 | 1257 | 38.1 | 128 | 1257 | 38.1
Memory Partition Management
OSMemCreate() 21 181 5.5 72 766 | 23.2 12 766 | 23.2
OSMemGet() 19 247 7.5 18 172 5.2 33 350 | 10.6
OSMemPut() 23 282 8.5 12 161 4.9 29 321 9.7
OSMemQuery() 40 400 | 121 45 450 | 13.6 45 450 | 13.6
Message Queues
OSQAccept() 34 387 | 11.7 25 269 8.2 44 479 | 145
0OSQCreate() 14 150 45 154 | 1291 | 39.1 | 154 | 1291 | 39.1
OSQFlush() 18 202 6.1 25 253 7.7 25 253 7.7
0SQPend() 64 620 | 18.8 45 495 | 150 | 186 | 1938 | 58.7
OSQPost() 98 873 | 26.5 51 547 | 16.6 | 155 | 1493 | 45.2
OSQPostFront() 87 788 | 23.9 44 412 | 125 | 153 | 1483 | 44.9
0SQQuery() 128 | 1100 | 333 | 137 | 1171 | 355 ] 137 | 1171 | 355
Semaphore Management
0SSemAccept() 10 113 3.4 16 161 4.9 16 161 4.9
OSSemCreate() 14 140 4.2 98 768 | 23.3 98 768 | 23.3
0SSemPend() 58 567 | 17.2 17 184 5.6 164 | 1690 | 51.2
0SSemPost() 87 776 | 235 18 198 6.0 151 | 1469 | 445
OSSemQuery() 110 882 | 26.7 | 116 931 | 282 | 116 931 | 28.2

Table 9.3, Execution times of u C/OS11 serviceson 33 MHz 80186.




Interrupts Disabled Minimum Maximum

Service [ c [ C | c
Task Management
OSTaskChangePrio() 63 567 | 172 | 178 981 | 29.7 | 166 | 1532 | 46.4
OSTaskCreate() 57 567 | 172 | 217 | 2388 | 72.4 | 266 | 2939 | 89.1
OSTaskCreateExt() 57 567 | 172 | 284 | 3157 | 957 | 284 | 3157 | 95.7
OSTaskDel() 62 620 | 188 | 116 | 1206 | 365 | 165 | 1757 | 53.2
OSTaskDelReq() 23 199 6.0 39 330 | 10.0 39 330 | 10.0
OSTaskResume() 27 242 7.3 48 430 13.0 97 981 29.7
OSTaskStkChk() 31 316 9.6 62 599 | 18.2 62 599 | 18.2
OSTaskSuspend() 37 352 | 10.7 63 579 | 175 | 112 | 1130 | 34.2
OSTaskQuery() 84 1025 | 311 95 1122 | 34.0 95 1122 | 34.0
Time Management
OSTimeDly() 57 567 | 17.2 81 844 | 25.6 85 871 | 26.4
OSTimeDlyHMSM() 57 567 | 172 | 216 | 2184 | 66.2 | 220 | 2211 | 67.0
OSTimeDlyResume() 57 567 | 17.2 23 181 5.5 98 989 | 30.0
OSTimeGet() 7 57 1.7 14 117 35 14 117 35
OSTimeSet() 7 61 1.8 11 99 3.0 11 99 3.0
OSTimeTick() 30 310 9.4 900 | 10257 | 310.8 | 1908 | 19707 | 597.2
User Defined Functions
OSTaskCreateHook() 0 0 0.0 4 38 1.2 4 38 1.2
OSTaskDelHook() 0 0 0.0 4 38 1.2 4 38 1.2
OSTaskStatHook() 0 0 0.0 1 16 0.5 1 16 0.5
OSTaskSwHook() 0 0 0.0 1 16 0.5 1 16 0.5
OSTimeTickHook() 0 0 0.0 1 16 0.5 1 16 0.5

Table 9.4, Execution times of p C/OS 11 services on 33 MHz 80186.

Below isalist of assumptions about how the minimum, maximum and interrupt disable times were determined and the
conditionsthat lead to these val ues.

OSSchedUnl ock() :
Minimum assumes that OSLOCKNesSt i Ng is decremented to 0 but there are no higher priority tasks
ready to run and thusOSSchedUnl ock () returnstothecaller.
Maximumalso decrements OSLOCKNest i Ng to 0 but this time, a higher priority task is ready to run.
This means that a context switch would occur.

OSIntExit():
Minimumassumesthat OSI Nt Nest i NQ isdecremented to 0 but there are no higher priority tasks ready
to run and thusOSI Nt EXi t () returnsto the interrupted task.
Maximumalso decrementsOSI Nt Nest i Ng to 0 but thistime, the ISR has made ahigher priority task is
ready to run. This meansthat OSI Nt EXi t () will not return to the interrupted task but instead, to the
higher priority task that isready to run.

OSTi ckl SR():
For thisfunction, | assumed that your application can have the maximum number of tasks allowed by p C/OS-1I
(64 taskstotal).
Minimumassumes that none of the 64 tasks are either waiting for time to expire or for atimeout on an event.
Maximumassumed that ALL 63tasks(theidletask is never waiting) are waiting for time to expire. 625 1 S may
seem like alot of time but, if you consider that al the tasks are waiting for time to expire then the CPU has



nothing elseto do anyway! On average, though, you can assumethat OSTi Ck1 SR(') would take about
500 u S (i.e. 5% overhead if your tick interrupts occurs every 10 mS).

OSMboxPend() :

Minimumassumes that a message is available at the mailbox.

Maximumoccurs when amessage is not available so, the task will haveto wait. Inthis case, acontext switch
occurs. The maximum timeisas seen by the calling task. Inother words, thisisthetimeit takestolook at the
mailbox, determine that there is no message, call the scheduler, context switch to the new task, context switch
back from whatever task was running, determine that atimeout occured and returning to the caller.

OSMboxPost () :
Minimum assumes that the mailbox is empty and that no task is waiting on the mailbox to contain a message.
Maximumoccurswhen one or more tasks are waiting on the mailbox for amessage. In this case, the message
isgiven to the highest priority task waiting and a context switch is performed to resume that task. Again, the
maximumtimeisasseen by thecallingtask. Inother words, thisisthetimeit takes to wake up the waiting task,
passit the message, call the scheduler, context switch to the task, context switch back from whatever task was
running, determine that atimeout occured and returning to the caller.

OSMentGet () :

Minimum assumes that amemo ry block is not available.
Maximumassumes that a memory block is available and is returned to the caller.

OSMenPut () :

Minimum assumes that you are returning a memory block to an already full partition.
Maximumassumes that your are returning the memory block to the partition.

OSQPend() :
Minimumassumes that a message is available at the queue.
Maximumoccurs when amessageis not available so, the task will haveto wait. In thiscase, a context switch
occurs. Themaximum timeisasseen by thecallingtask. In other words, thisisthetimeit takesto look at the
queue, determine that thereis no message, call the scheduler, context switch to the new task, context switch
back from whatever task was running, determine that atimeout occured and returning to the caller.



OSQPost () :
Minimumassumes that the queue is empty and that no task iswaiting on the queue to contain a message.
Maximumoccurs when one or more tasks are waiting on the queue for amessage. In thiscase, the messageis
given to the highest priority task waiting and a context switch is performed to resume that task. Again, the
maximumtimeisasseen by thecallingtask. Inother words, thisisthetimeit takesto wake up thewaiting task,
passit themessage, call thescheduler, c ontext switch to the task, context switch back from whatever task was
running, determine that atimeout occured and returning to the caller.

OSQPost Front ():
This function performs virtually the same processing asOSQPoOSt () .

OSSenPend() :
Minimum assumes that the semaphoreis available (i.e. has a count higher than 0).
Maxi mum occurs when the semaphore is not available so, the task will have to wait. In this case, a context
switchoccurs. Asusual, themaximumtimeisasseen by thecallingtask. Thisis thetimeit takesto look at the
semaphore value, determinethat it’s 0, call the scheduler, context switch to the new task, context switch back
from whatever task was running, determine that atimeout occured and returning to the caller.

OSSenPost ()
Minimumassumes that there are no tasks waiting on the semaphore.
Maxi mumoccurs when one or moretasks are waiting for the semaphore. In thiscase, the highest priority task
waitingisreadied and acontext switchisperformed to resumethat task. Again,the maximum time s as seen by
the calling task. Thisisthetimeit takesto wake up the waiting task, call the scheduler, context switch to the
task, context switch back from whatever task was running, determine that a timeout occured and returning to

thecaller.

OSTaskChangePri o() :
Minimum assumes that you are changing the priority of atask that will not have a priority higher than the

current task.
M aximum assumes that you are changing the priority of atask that will have ahigher priority than thecurrent

task. Inthic case, acontext switch will occur.

OSTaskCreat e():
Minimumassumes that OSTaskCr eat () will not create a higher priority task and thus no context

switch isinvolved.
Maximumassumesthat OSTask Cr eat () iscreating ahigher priority task and thus a context switch

will result.
In both cases, the execution times assumed that OSTask Cr eat eHook () didn't do anything.

OSTaskCr eat eExt ():
Minimumassumesthat OSTask Cr eat e Ext (1) will not need to initialize the stack with zerosin order

to do stack checking.

Maximumassumesthat OSTask Cr eat e Ext () will haveto initialize the stack of the task. However,
the execution time greatly depends on the number of elementstoinitialize. | determined that it takes 100 clock
cycles (3 S) to clear each element. A 1000 byte stack would require: 1000 bytes divided by 2 bytes/element
(16-bit wide stack) times 3 1 S per element or, 1500 1 S. Note that interrupts are enabled while the stack isbeing
cleared to allow your application can respond to interrupts.

In both cases, the execution times assumed that OSTask Cr eat eHook () didn't do anything.

OSTaskDel ():

Minimumassumes that the task being deleted is not the current task.



Maximumassumes that the task being deleted isthe current task. In this case, acontext switch will occur.

OSTaskDel Req():
Both minimumandmaximumassume that the call will return indication that the task is deleted. Thisfunction
isso short that it doesn’t make much difference anyway.

OSTaskResunme():
Minimumassumesthat atask isbeing resumed but this task has alower priority than the current task. Inthis
case, a context switch will not occur.
Maxi mumassumes that the task being resumed will be ready-to-run and will have a higher priority than the
current task. Inthis case, a context switch will occur.

OSTaskSt kChk():

Minimumassumesthat OSTask St KChk () ischeckinga‘full’ stack. Obviously, thisishardly possible
since the task being checked would most likely have crashed. However, this does establish the absolute
minimum exe cution time, however unlikely.

Maximum also assumes that OSTask St KChk (') is checking a‘full’ stack but you need to add the
amount of timeit takes to check each ‘zero’ stack element. | was able to determine that each element takes 80
clock cycles (2.4 S) to check. A 1000 byte stack would thus require: 1000 bytes divided by 2 bytes/element
(16-bit wide stack) times 2.4 . S per element or, 1200 1 S. Total execution timewould thusbe 1218 u's. Note that
interrupts are enabled while the stack is being checked.

OSTaskSuspend() :

Minimumassumes that the task being suspended is not the current task.
Maxi mumassumes that the current task is being suspended and a context switch will occur.



OSTaskQuery():

Minimum andmaximumare the same and it is assumed that all the options are included so that an OS_TCB
containsall thefields. In thiscase, anOS_TCB for the large model port requires 45 bytes.

OSTi meDl y():

Both theminimumand maximumassume that the time delay will be greater than O tick. In this case, acontext
switch always occur.
Minimumis the case where the bit in OSRdYy G p doesn’t need to be cleared.

OSTi meDl yHVSM )
Both theminimumand maxi mumassumethat thetime delay will begreater than 0. Inthiscase, acontext switch
will occur. Furthermore, thetime specified must resultinadelay of lessthan 65536 ticks. Inother words, if atick
interrupt occurs every 10 mS (100 Hz) then the maximum value that you can specify is 10 minutes, 55 seconds
and 350 mSinorder for theexecutiontimesshown to bevalid. Obviously, you can specify longer delays using
thisfunction call.

OSTi meDl yResume():

Minimumassumesthat the delayed task is made ready to run but, thistask hasalower priority than the current
task. Inthiscase, p C/OS-II will not perform a context switch.

Maximumassumesthat the delayed task is made ready to run and thistask hasahigher priority than the current
task. This, of course, resultsin acontext switch.

OSTi meTi ck() :
This function is almost identical to OSTi Ckl SR(') except that OSTi ckl SR() accounted for
OSI nt Ent er () and OSI nt Exi t (). I assumed that your application can have the maximum
number of tasks allowed by p C/OSHI (64 taskstotal).
Minimum assumes that none of the 64 tasks are either waiting for time to expire or for atimeout on an event.
Maximumassumed that ALL 63 tasks (theidletask is never waiting) are waiting for timeto expire. 600 pu S may
seem like alot of time but, if you consider that all the tasks are waiting for time to expire then the CPU has
nothing elseto do anyway! On average, though, you can assumethatOSTi meTi ck () would take about
450 p S (i.e. 4.5% overhead if your tick interrupts occurs every 10 mS).



Interrupts Disabled Minimum Maximum
Service ! C | c [ c

OSVersion() 0 0 .0 2 19 6 2 19 .6

OSStart() 0 0 .0 35 278 8.4 35 278 8.4

0SSchedLock() 4 34 1.0 7 87 2.6 7 87 26

OSIntEnter() 4 42 1.3 4 42 1.3 4 42 1.3

OSTimeGet() 7 57 1.7 14 117 3.5 14 117 35

OSTimeSet() 7 61 1.8 11 99 3.0 11 99 3.0

0SSemAccept() 10 113 3.4 16 161 4.9 16 161 49

0SSemCreate() 14 140 4.2 98 768 23.3 98 768 23.3
OSMboxCreate() 15 148 45 115 939 28.5 115 939 28.5
0SQCreate() 14 150 4.5 154 1291 39.1 154 1291 39.1
OSMboxAccept() 15 161 4.9 13 257 7.8 13 257 7.8

OSMemCreate() 21 181 55 72 766 23.2 72 766 23.2
OSTaskDelReq() 23 199 6.0 39 330 10.0 39 330 10.0
OSQFlush() 18 202 6.1 25 253 7.7 25 253 7.7

OSTaskResume() 27 242 7.3 48 430 13.0 97 981 29.7
OSMemGet() 19 247 75 18 172 5.2 33 350 10.6
OSMemPut() 23 282 8.5 12 161 4.9 29 321 9.7

OSTimeTick() 30 310 9.4 900 10257 | 310.8 1908 | 19707 | 597.2
OSTickISR() 30 310 9.4 948 10803 | 327.4 2304 | 20620 | 624.8
0STaskStkChk() 31 316 9.6 62 599 18.2 62 599 18.2
OSTaskSuspend() 37 352 10.7 63 579 17.5 112 1130 34.2
OSQAccept() 34 387 11.7 25 269 8.2 44 479 14.5
OSMemQuery() 40 400 12.1 45 450 13.6 45 450 13.6
OSIntExit() 56 558 16.9 27 207 6.3 57 574 17.4
0SSchedUnlock() 57 567 17.2 13 130 3.9 73 782 23.7
OSTimeDly() 57 567 17.2 81 844 25.6 85 871 26.4
0OSTimeDlyResume() 57 567 17.2 23 181 5.5 98 989 30.0
0OSTaskChangePrio() 63 567 17.2 178 981 29.7 166 1532 46.4
0SSemPend() 58 567 17.2 17 184 5.6 164 1690 51.2
OSMboxPend() 68 567 17.2 28 317 9.6 184 1912 57.9
OSTimeDlyHMSM() 57 567 17.2 216 2184 66.2 220 2211 67.0
OSTaskCreate() 57 567 17.2 217 2388 72.4 266 2939 89.1
OSTaskCreateExt() 57 567 17.2 235 2606 95.7 284 3157 95.7
OSTaskDel() 62 620 18.8 116 1206 36.5 165 1757 53.2
OSQPend() 64 620 18.8 45 495 15.0 186 1938 58.7
OSMboxPost() 84 747 22.6 24 305 9.2 152 1484 45.0
0SSemPost() 87 776 23.5 18 198 6.0 151 1469 44.5
0OSQPostFront() 87 788 23.9 44 412 12.5 153 1483 44.9
0SQPost() 98 873 26.5 51 547 16.6 155 1493 45.2
0SSemQuery() 110 882 26.7 116 931 28.2 116 931 28.2
OSMboxQuery() 120 988 29.9 128 1257 38.1 128 1257 38.1
OSTaskQuery() 84 1025 31.1 95 1122 34.0 95 1122 34.0
0SQQuery() 128 1100 33.3 137 1171 35.5 137 1171 35.5
OSlnit() N/A N/A N/A N/A N/A N/A N/A N/A N/A
OSStatinit() N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 9.5, Execution times sorted by interrupt disable time.




Interrupts Disabled Minimum Maximum
Service [ c [ c [ c

OSVersion() 0 0 .0 2 19 .6 2 19 .6
OSIntEnter() 4 42 13 4 42 13 4 42 13
0SSchedLock() 4 34 1.0 7 87 26 7 87 26
OSTimeSet() 7 61 1.8 11 99 3.0 11 99 3.0
OSTimeGet() 7 57 1.7 14 117 35 14 117 35
0SSemAccept() 10 113 34 16 161 49 16 161 49
OSQFlush() 18 202 6.1 25 253 7.7 25 253 7.7
OSMboxAccept() 15 161 49 13 257 7.8 13 257 7.8
OSStart() 0 0 .0 35 278 8.4 35 278 8.4
OSMemPut() 23 282 85 12 161 49 29 321 9.7
OSTaskDelReq() 23 199 6.0 39 330 10.0 39 330 10.0
OSMemGet() 19 247 75 18 172 5.2 33 350 10.6
OSMemQuery() 40 400 12.1 45 450 13.6 45 450 13.6
OSQAccept() 34 387 11.7 25 269 8.2 44 479 14.5
OSIntExit() 56 558 16.9 27 207 6.3 57 574 17.4
OSTaskStkChk() 31 316 9.6 62 599 18.2 62 599 18.2
OSMemCreate() 21 181 55 72 766 23.2 72 766 23.2
0OSSemCreate() 14 140 42 98 768 23.3 98 768 23.3
0SSchedUnlock() 57 567 17.2 13 130 39 73 782 23.7
OSTimeDly() 57 567 17.2 81 844 25.6 85 871 26.4
OSSemQuery() 110 882 26.7 116 931 28.2 116 931 28.2
OSMboxCreate() 15 148 45 115 939 28.5 115 939 28.5
OSTaskResume() 27 242 7.3 48 430 13.0 97 981 29.7
OSTimeDlyResume() 57 567 17.2 23 181 55 98 989 30.0
OSTaskQuery() 84 1025 31.1 95 1122 34.0 95 1122 34.0
OSTaskSuspend() 37 352 10.7 63 579 17.5 112 1130 34.2
0SQQuery() 128 1100 33.3 137 1171 35.5 137 1171 35.5
OSMboxQuery() 120 988 29.9 128 1257 38.1 128 1257 38.1
0SQCreate() 14 150 45 154 1291 39.1 154 1291 39.1
0SSemPost() 87 776 23.5 18 198 6.0 151 1469 44.5
OSQPostFront() 87 788 23.9 44 412 12.5 153 1483 44.9
OSMboxPost() 84 747 226 24 305 9.2 152 1484 45.0
OSQPost() 98 873 26.5 51 547 16.6 155 1493 45.2
OSTaskChangePrio() 63 567 17.2 178 981 29.7 166 1532 46.4
0SSemPend() 58 567 17.2 17 184 5.6 164 1690 51.2
OSTaskDel() 62 620 18.8 116 1206 36.5 165 1757 53.2
OSMboxPend() 68 567 17.2 28 317 9.6 184 1912 57.9
0SQPend() 64 620 18.8 45 495 15.0 186 1938 58.7
OSTimeDlyHMSM() 57 567 17.2 216 2184 66.2 220 2211 67.0
OSTaskCreate() 57 567 17.2 217 2388 72.4 266 2939 89.1
OSTaskCreateExt() 57 567 17.2 235 2606 95.7 284 3157 95.7
OSTimeTick() 30 310 9.4 900 10257 | 310.8 1908 19707 | 597.2
OSTickISR() 30 310 9.4 948 10803 | 327.4 2304 20620 | 624.8
OSilnit() N/A N/A N/A N/A N/A N/A N/A N/A N/A
OSStatlnit() N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 9.6, Execution times sorted by maximum execution time.




Chapter 10

Upgrading from
LC/OSto uC/OS- |

This chapter describes what you need to do to migrate a port done for u C/OS to run on p C/OS-II. If you have gone
through theeffort of porting p C/OSto aprocessor then the amount of work to get this port towork with p C/OS-I | should
beminimal. In most cases, you should be able to do thisin about an hour. If you are familiar with the p C/OS port then,
you may want to go to the summary in section 10.05.

10.00 Directoriesand Files

Thefirstthing youwill noticeinthat thedirectory structurefor u C/OSH 1 issimilar to pu C/OS except that themain directory
iscalled\ SOFTWARE\ uCOS- | | instead of \ SOFTWARE\ uCGS, respectively.

All u C/OS- 1 portsshould be placed under thel SOFTWARE\ uCGOS- | | directory onyour hard drive. The source
code for each microprocessor or microcontroller port MUST be found in either two or three filess OS_CPU. H
OS_CPU_C. Cand optionally, OS_CPU_A. ASM  The assembly language file is optional because some

compilerswill allow youto havein-line assembly language and thus, you can place the needed assembly language code
directlyinOS_CPU_C. C.

The processor specific code (i.e. the port) for p C/OS was placed in files having the processor name as part of the file
names. For example, the Intel 80x86 rea-mode, large model had files called: | X86L. H | Xx86L_C. C, and

| x86L_A. ASM Table10.1 showsthe correspondance between the new file and directory names and the old ones.

\ SOFTWARE\ uCOS\ I X86L \ SOFTWARE\ UCOS- 1T\ 1 X86L
[x86L. H OS_CPU. H
[X86L_A. ASM OS_CPU_A. ASM
Tx86L_C. C OS_CPU C. C

Table 10.1, Renaming filesfor u C/OSH |

Asastarting point, al you have to do is copy the old file names (from the pu C/OS directory) to the new namesin the
equivaent u C/OS-1 directory. Itwill beeasier to modify these files than to create them from scratch. Table 10.2 shows
afew more examples of u C/OS port file trandations.

\ SOFTWARE uCOS\ 1 80251 \ SOFTWARE\ UCOS- 111180251
[80251. H OS_CPU. H
180251. C OS5 _CPU C. C

\ SOFTWARE\ uCOB\ M680X0 \ SOFTWARE\ UCOS- 11\ MB8OX0
M680X0. H O5_CPU. H
M680X0. C OS5 _CPU C. C




\ SOFTWARE\ uCOS\ Mp8HC11 \ SOFTWARE\ uCOS- 1T\ MpBHCL1
M6SHCL1. H OS_CPU. H
MBSHCLL. C OS5 _CPU C. C
\ SOFTVARE\ uCOS\ Z80 \ SOFTVARE\ uCOS- 1T\ Z80
Z80. H OS_CPU. H
Z80_A. ASM OS_CPU_A. ASM
Z80_C.C OS5 _CPU C. C

Table 10.2, Renaming files from p C/OS to pC/OS-11

10.01 INCLUDES.H

You wi || need to nodify thel NCLUDES. Hfileof your application. For example, the i C/OS
INCLUDESH filefor the Intel 80x86 real mode, large model looks asshownin listing 10.1. Y ou will need to edit thisfile
and change:

a) the directory name UCOS to UCOS- | |
b) the file namel X86L. Hto OS_CPU. H
¢) the file nane UCOS. HtouCOS_I'| . H

The new file should thus look as shown in listing 10.2.

/*
LR R S S S S S S S R S O S

* I NCLUDES. H

khkkhkkhkhkhkhkhkhkhhkhkhkhhkhkhhkrkhkhhkhhkhkrkhkhkhhhkhkrkhhkhhhk khkhhkhhk k khhkhk k k khhkkkhk * k,*k*%x

*/

#i ncl ude <STDI O. H>
#i ncl ude <STRI NG. H>
#i ncl ude <CTYPE. H>
#i ncl ude <STDLI B. H>
#i ncl ude <CONI O. H>
#i ncl ude <DCS. H>

#i ncl ude "\ SOFTWARE\ UCOS\ | X86L\ | X86L. H'
#i ncl ude "OS_CFG H"
#i ncl ude "\ SOFTWARE\ UCOS\ SOURCE\ UCGCS. H'

Listing 10.1, p C/OSINCLUDESH

/*

LR R I S S S S R R S S S R S R S S S S R O S

* I NCLUDES. H

LR S S S S S S S S S S S O S S S S S O S S S

*/

#i ncl ude <STDI O. H>




#i ncl ude <STRI NG. H>
#i ncl ude <CTYPE. H>
#i ncl ude <STDLI| B. H>
#i ncl ude <CONI O. H>

#i ncl ude <DCS. H>

#i ncl ude "\ SOFTWARE\ uCCS- | I\ | X86L\ OS_CPU. H"
#i ncl ude "OS_CFG H"

#i ncl ude "\ SOFTWARE\ uCCS- | I\ SOURCE\ uCOS | I . H"

Listing 10.2, 1 C/OS-I1 INCLUDES.H

10.02 OS CPU.H

OS_CPU. Hcontai ns;rocessor and implementation specific#def i Nes constants, macros, andt ypedef s.

10.02.01 OS CPU.H, Compiler specific data types
To satisfy uC/OS-1, you will need to create six new data types: | NT8U, | NT8S, | NT16U, | NT16S,

I NT32U and | NT32S. These corresponds to unsigned and signed 8, 16 and 32 bit integers, respectively. In
1 C/OS, | had declared the equivalent datatypes: UBYTE, BYTE, UWORD, WORD, UL ONG and LONG. All you

have to do is copy the p C/OS data types and change UBYTE to | NT8U BYTE to | NT8S, UAORD to
| NT16U ...asshowninlisting 10.3.

/* uC/ OS data types: */
typedef unsigned char UBYTE; /* Unsigned 8 bit quantity */
typedef signed char BYTE; /* Signed 8 bit quantity */
typedef unsigned int UWORD; /* Unsigned 16 bit quantity */
typedef signed i nt WORD; /* Signed 16 bit quantity */
typedef unsigned |ong ULONG /* Unsigned 32 bit quantity */
typedef signed Il ong LONG /* Si gned 32 bit quantity */
/[* uC/OS-11 data types */
typedef unsigned char | NT8U; /* Unsigned 8 bit quantity */
typedef signed char | NT8S; /* Signed 8 bit quantity */
typedef unsigned int I NT16U; /* Unsigned 16 bit quantity */
typedef signed i nt I NT16S; /* Signed 16 bit quantity */
typedef unsigned |ong | NT32U; /* Unsigned 32 bit quantity */
t ypedef signed | ong | NT32S; /* Signed 32 bit quantity */

Listing 10.3, p C/OSto uC/OS-11 data types

InuC/OS, atask stack was declared as being of typeOS_STK_TYPE. A stack, in p C/OS-11, must be declared as
being of typeOS_STK. To prevent you from editing all your application files, you could simply create the two data
typesin OS_CPU.H as shown in listing 10.4 (Intel 80x86 given asan example).

#define OS_STK TYPE UBYTE /* Satisfy uC/OS x|
#define OS_STK | NT8U /* Satisfy uC/OS 11 x|

Listing 10.4, u C/OS and u C/OS-11 task stack data types




10.02.02 OS CPU.H, 0s ENTER_CRITICAL() and OS EXIT_CRITICAL()

HC/OSHI (asdid p C/OS) defines twomacrosto disable and enable interrupts: OS_ENTER_CRI TI CAL() and
OS_EXI T_CRI TI CAL( ) , respectively. You shouldn't have to change these macros when migrating from

p C/OSto p C/OS-I.

10.02.03 OS CPU.H, 0S STK_GROWTH

The stack on most microprocessorsand microcontrollersgrowsfrom high-memory to low-memory. There are, however,
some processors that work the other way around. p C/OS 1 has been designed to be able to handle either flavor. This

is accomplished by specifying to pC/OSIlI which way the stack grows through the configuration constant
OS_STK_GROWIH as shown below:

Set OS_STK_GROWIH to 0 for Low to High memory stack growth.
Set OS_STK_GROWIH to 1 for High to Low memory stack growth.

Thesearenew #def i Ne constants from p C/OS so you will need to include themin OS_CPU. H,

10.02.04 OS CPU.H, OS TASK_SW()

OS_TASK_SW() isamacrothatisinvoked whenp C/OS-I1 switchesfromalow-priority task to the highest-priority
task. OS_TASK_SW() isawayscalled fromtask level code. Thismacro doesn’t need to be changed from p C/OS

to u C/IOS-II.

10.02.05 OS CPU.H, OS FAR

OS_FAR wasusedinp C/OSbecause of theIntel 80x86 architecture. This#def I Ne hasbeenremovedinp C/OSHI
because it made the code less portable. It turns out that if you specify the large model (for the Intel 80x86) then all
memory references assumed the‘f @r * attribute anyway.

All tasks in p C/OS were declared as shown in listing 10.5. You can either edit al the files that made references to
OS_FAR or simply create amacroin OS_ CPU. Hto equate OS_FAR to nothing in order to satisfy u C/OS-I.

void OS_FAR task (void *pdata)

{
pdata = pdat a;
while (1) {
}

}

Listing 10.5, Declaration of atask in p C/OS

10.03  OS CPU A.ASM

A nC/OSand p C/OSHI port requires that you write four fairly simple assembly language functions:




0SSt ar t Hi ghRdy ()
OSCt xSwW( )

OSI nt Ct xSW()
OSTi ck! SR()

10.03.01 OS CPU_A.ASM, OSStartHighRdy()

Inpc/os-11, 0SSt ar t Hi ghRdy () musT cal OSTaskSwHook (). OSTaskSwHook (') did not
exist. OSSt ar t H ghRdy () needto call OSTaskSwHooOK () before you load the stack pointer of the
highest priority task. Also,OSSt ar t Hi ghRdy () needstoset OSRUNNi ng to 1 immediately after calling
OSTaskSwHooK (). Listing 10.6 showsthe pseudo-code of OSSt ar t Hi ghRdy (') . uC/0S only had the
last three steps.

OSSt art Hi ghRdy:
Cal | OSTaskSwHook() ;
Set OSRunning to 1;
Load the processor stack pointer with OSTCBH ghRdy- >OSTCBSt kPt r ;
POP all the processor registers fromthe stack;
Execute a Return fromInterrupt instruction;

Listing 10.6, Pseudo-code for OSStartHighRdy()

10.03.02 OS CPU_A.ASM, OSCtxSw()

Two things have been added in u C/OS-11 during a context switch. First, you MUST call OSTask SwHook ()

immediately after saving the current task’s stack pointer into the current task’s TCB. Second, you MUST set
OSPr i oCur toOSPr i oHi ghRdy BEFORE you load the new task’s stack pointer.

Listing 10.7 shows the pseudo-code of OSCt X SW( ) . 1 C/OS-11 adds steps L 10.7(1) and L10.7(2).

OSCt x Sw.
PUSH processor registers onto the current task’s stack;
Save the stack pointer at OSTCBCur->OSTCBSt kPtr;

Cal | OSTaskSwHook(); (1)
OSTCBCur = OSTCBHi ghRdy;
OSPri oCur = OSPri oHi ghRdy; (2)

Load the processor stack pointer w th OSTCBH ghRdy- >OSTCBSt kPt r ;
POP all the processor registers fromthe stack;
Execute a Return fromInterrupt instruction;

Listing 10.7, Pseudo-code for OSCtxSw()

10.03.03 OS_CPU_A.ASM, OSI ntCtxSw()

Like OSCt X SW( ) , two things have been added in OSI Nt Ct XSW( ) for uC/OSHI. First, you MUST call
OSTas kSWHOOk( ) immediately after saving thecurrent task' sstack pointer intothecurrent task’sTCB. Second,
you MUST set OSPr i oCur to OSPr i oHi ghRdy BEFORE you load the new task’s stack pointer.

Listing 10.8 shows the pseudo-code of OSI Nt Ct X SW( ) . uC/OS-11 adds steps L 10.8(1) and L10.8(2).




OSCt x Sw.
Save the stack pointer at OSTCBCur->OSTCBSt kPt r ;

Cal | OSTaskSwHook(); (1)
OSTCBCur = OSTCBHi ghRdy;
OSPri oCur = OSPri oHi ghRdy; (2)

Load the processor stack pointer w th OSTCBH ghRdy- >OSTCBSt kPt ;
POP all the processor registers fromthe stack;
Execute a Return fromlInterrupt instruction;

Listing 10.8, Pseudo-code for OSIntCtxSw()

10.03.04 OS CPU_A.ASM, OSTickl SR()

The codefor thisfunction in p C/ OS-1l isidentical to pu C/OS and thus shouldn’t be altered.

10.04 OS CPU CC

A nC/OSHI port requires that you write six fairly simple C functions:

OSTaskSt kil nit ()
OSTaskCr eat eHook()
OSTaskDel Hook()
OSTaskSwHook()
OSTaskSt at Hook ()
OSTi meTi ckHook()

Theonly function that isactually necessary isOSTask St k1 ni t () . Theother fivefunctionsMUST bedeclared
but don’t need to contain any code inside them.

10.04.01 OS_CPU_C.C, OSTaskStkI nit()

Inpc/osOSTaskCr eat e() wasconsidered aprocessor specific function. It turned out that only a portion of

OSTaskCreat e() was actually processor specific.  This portion has been extracted out of
OSTaskCr eat e( ) and placedinanew function called OSTaskSt kI ni t () .

OSTaskSt kI ni t () isonly responsiblefor setting up the task’ sstack to look asif aninterrupt just occurred and
all the processor registerswere pushed onto thetask’ sstack. Togiveyou anexample, listing 10.9 showsthep C/OScode
for OSTaskCr eat e() for the Intel 80x86 rea-mode, large model. Listing 10.10 shows the code for
OSTaskSt kI ni t () for the same processor but for p C/OS-11. As you can see by comparing the two listings,
lines L10.9(2) through L10.9(18) have basically been extracted from OSTaskCr eat e() and placed in
OSTaskSt kI ni t () . inother words, everything after OS_EXI T_CRI TI CAL() L10.9(1) and calling
OSTCBI ni t () L10.9(19) hasbeen movedtoOSTaskSt ki ni t ().

Y ouwill noticethat thecodefor u C/OS1 uses the new datatypes (see section 10.02.01, OS_CPU.H, Compiler specific
datatypes). Also, instead of initializing all the processor registerstoOX 0000, | decided toinitialize them with avalue
that would make debugging alittleeasier. Y ou should notethat theinitial value of aregister when atask iscreatedisnot
critical.




UBYTE OSTaskCreate(void (*task)(void *pd), void *pdata, void *pstk, UBYTE p)

{
UWORD OS FAR *st k;
UBYTE err;

OS_ENTER_CRI Tl CAL() ;
if (OSTCBPrioThl[p] == (OS_TCB *)0) {
OSTCBPri oThl [p] = (OS_TCB *) 1;

OS_EXIT_CRI Tl CAL(); (1)
stk = (UMORD OS_FAR *) pstk; (2)
*--stk = (UWORD) FP_OFF( pdat a) ; (3)
*--stk = (UWORD) FP_SEQ(t ask) ; (4)
*--stk = (UWORD) FP_OFF(t ask); (5)
*--stk = (UWORD) 0x0202; (6)
*--stk = (UWORD) FP_SEQ(t ask) ; (7)
*--stk = (UWORD) FP_OFF(t ask); (8)
*--stk = (UWORD) 0x0000; (9)
*--stk = (UWORD) 0x0000; (10)
*--stk = (UWORD) 0x0000; (11)
*--stk = (UWORD) 0x0000; (12)
*--stk = (UWORD) 0x0000; (13)
*--stk = (UWORD) 0x0000; (14)
*--stk = (UWORD) 0x0000; (15)
*--stk = (UWORD) 0x0000; (16)
*--stk = (UWORD) 0x0000; (17)
*--stk = _DS; (18)

err OSTCBInit (p, (void far *)stk); (19)
if (err == OS_NO_ERR) {
i f (OSRunni ng) {
OSSched() ;
}
} else {
OSTCBPri oTbl [p] = (OS_TCB *)O0;
}
return (err);
} else {
OS_ EXIT_CRITI CAL() ;
return (OS_PRI O EXI ST);

Listing 10.9, OSTaskCreate() for uC/OS




voi d *OSTaskStklnit (void (*task)(void *pd), void *pdata, void *ptos, | NT16U opt)
{

I NT16U *stk;

opt = opt;

stk = (I NT16U *) pt os;

*stk-- = (I NT16U) FP_SEQE pdat a) ;
*stk-- = (INT16U) FP_OFF( pdat a) ;
*st k-- = (I NT16U) FP_SEG(t ask) ;
*stk-- = (I NT16U) FP_OFF(t ask);
*stk-- = (1 NT16U) 0x0202;

*stk-- = (INT16U) FP_SEQ(t ask) ;
*stk-- = (I NT16U) FP_OFF(t ask);
*stk-- = (1 NT16U) OxAAAA;

*stk-- = (I NT16U) OxCCCC;

*stk-- = (I NT16U) OxDDDD;

*stk-- = (I NT16U) OxBBBB;

*stk-- = (I NT16U) 0x0000;

*stk-- = (INT16U) Ox1111;

*stk-- = (I NT16U) 0x2222;

*stk-- = (I NT16U) 0x3333;

*stk-- = (1 NT16U)0x4444;

*stk = DS;

return ((;oid *)stk);

Listing 10.10, OSTask Stk nit() for pC/OS-11

10.04.02 OS_CPU_C.C, OSTaskCreateH 0ok()

OSTaskCr eat eHook () isafunction that did not exist in u C/OS. If you are simply migrating from p C/OSto
p C/OS 11 thenyou can simply declarean empty functionasshowninlisting 10.11. Y oushould notethat if | didn’t assign
pt cb topt cb then some compilers would generate awarning indicating that the argument Pt Cb is not used.

#i f OS_CPU_HOOKS_EN
OSTaskCr eat eHook( OS_TCB *pt ch)

{

ptcb = ptchb;
}
#endi f

Listing 10.11, OSTaskCreateHook() for uC/OS1

You should also wrap the function declaration with the conditional compilation directive. The code for
OSTaskCr eat eHook( ) isgenerated only if OS_CPU_HOOKS_ENssetto 1in OS_CFG. H This

allows the user of your port to redefine all the hook functionsin adifferent file.




10.04.03 OS_CPU_C.C, OSTaskDelHook()

OSTaskDel Hoo k( ) isafunctionthat did not existin i C/OS. Again, if youaremigrating from p C/OSto i C/OS-1
then you can simply declarean empty function asshowninlisting 10.12. Y oushould note that if | didn’t assign Pt C b
to Pt Cb then some compilers would generate awarning indicating that the argument Pt Cb is not used.

#i f OS_CPU_HOOKS_EN
OSTaskDel Hook( OS_TCB *pt ch)

{

ptcb = ptchb;
}
#endi f

Listing 10.12, OSTaskDelHook() for pC/OS-11

You should also wrap the function declaration with the conditional compilation directive. The code for
OSTaskDel Hook() isgeneratedonlyif OS_CPU_HOOKS_ENissetto1inOS_CFG. H Thisalows

the user of your port to redefine al the hook functionsin adifferent file.

10.04.04 OS_CPU_C.C, OSTaskSwHook()

OSTask SwHook () isalsofunctionthat did not existinu C/OS. If you are migrating from p C/OSto p C/OSH | then
you can simply declare an empty function as shown in listing 10.13.

#i f OS_CPU_HOOKS EN
OSTaskSwHook( voi d)

{

}
#endi f

Listing 10.13, OSTaskSwHook() for pC/OS-II

You should also wrap the function declaration with the conditional compilation directive. The code for
OSTask SwHook (') isgenerated only if OS_CPU_HOOKS_ENissetto1in OS_CFG. H.

10.04.05 OS _CPU_C.C, OSTaskStatHook()

OSTaskSt at Hook () isasofunction that did not existin p C/OS. Y ou can simply declare an empty function as
shown in listing 10.14.




#i f OS_CPU HOOKS EN
OSTaskSt at Hook( voi d)
{

}
#endi f

Listing 10.14, OSTaskStatHook() for u C/OSH |

You should also wrap the function declaration with the conditional compilation directive. The code for
OSTaskSt at Hook (') isgenerated only if OS_CPU_HOOKS ENissetto 1inOS_CFG. H.

10.04.06 OS CPU_C.C, OSTimeTickHook()

OSTi meTi ckHook (') isalsofunctionthat did not exist in i C/OS. Y ou can simply declare an empty function as
shown in listing 10.15.

#i f OS_CPU_HOOKS EN
OSTi meTi ckHook( voi d)
{

}
#endi f

Listing 10.14, OSTimeTickHook() for p C/OSH |

You should also wrap the function declaration with the conditional compilation directive. The code for

OSTi meTi ckHook (') isgenerated only if OS_CPU_HOOKS_ ENissetto 1inOS_CFG. H.




10.05 Summary

Table 10.3 providesasummary of the changes needed to bring aport for u C/OStowork with L C/OSH1. Y ou should note
that ‘processor_name.? |Isthe name of the u C/OSfile containing the port.

uC/OS LC/OSH]
Processor_nameH OS CPUH

Datatypes: Datatypes

Change UBYTEto | NT8U

Change BYTE to | NT8S

Change UWORDto | NT16U

Change WORD to I NT16S

Change UL ONGto | NT32U

Change LONGto | NT32S
ChangeOS_STK_TYPE to OS_STK
OS_ENTER_CRI TI CAL( No change
)
OS EXIT_CRITI CAL() No change
- AddOS_STK _GROWH
OS_TASK _SW() No change

OS_FAR

DefineOS_FAR to nothing or,
Remove all referencesto OS_FAR

Processor name ASM

OS CPU_A.ASM

OSSt art Hi ghRdy ()

Add call toOSTask SwHook ()
set OSRunni ngto 1 (8-hit)

OSCt xSw() Add call toOSTask SwHook ()
Copy OSPr i oHi ghRdy to OSPr i oCur (g-bit)
OSI nt Ct xSwW() Add call toOSTask SwHook ()
Copy OSPr i oHi ghRdy to OSPr i oCur (8-bit)
OSTi ckl SR() No change
Processor name.C OS CPU C.C

OSTaskCreat e()

Extract stack initialization code and put this codein afunction called
OSTaskStklnit() .

Add an empty function called OSTask Cr eat eHook( ) .

Add an empty function called OSTaskDel Hook () .

Add an empty function called OSTask SwHook () .

Add an empty function called OSTask St at Hook () .

Add an empty function called OSTi meTi ckHook(') .

Table 10.3, Summary of migrating a u C/OS port to uC/OS-I1.




Chapter 11

Reference Manual

This chapter provides auser's guide to p C/OS-11 services. Each of the user accessible kernel servicesis presented in
alphabetical order and the following information is provided for each of the services:

1) A brief description

2) Thefunction prototype

3) Thefile name where the source codeisfound

4) The#define constant needed to enable the code for the service
5) A description of the arguments passed to the function

6) A description of the return value(s)

7) Specific notes and warning on the usage of the service

8) Oneor two examples on how to use the function



OSInit()

voi d OSlnit(void)

File Called from Code enabled by
OS CORE.C Startup code only N/A

OSl ni t () isusedtoinitidizen C/OSI1. OSI ni t () must be called prior to calling OSSt ar t () which will actually
start multitasking.

Arguments
NONE
Returned Value
NONE
Notes/War nings

OSI ni t () must be called beforeOSSt art () .

Example
void main (void)
{
CSlnit(); /* Initialize uC/OS-11 */
CSStart(); /[* Start Multitasking */
}

OSIntEnter()

void CSl ntEnter(void)

File Called from Code enabled by
OS CORE.C ISR only N/A

OSI nt Ent er () isused to notify g C/OS-I1 that an ISR is being processed. This dlows pu C/OS|I to keep track of
interrupt nesting. OSI nt Ent er () isused in conjunction withOSI nt Exi t ().

Arguments

NONE




NONE

1) Thisfunction must not be called by task level code.

2) Youcanactualy increment theinterrupt nesting counter (OSI nt Nest i ng) directly if your processor can perform
thisoperationindivisibly. Inother words, if your processor can perform aread-modify-write as an atomic operation
thenyou don't needtocall OSI nt Ent er () andinstead, directly increment OSI nt Nest i ng. Thiswould avoid
the overhead associated with calling afunction.

Herewecall OSI nt Ent er () because of backward compatibility with u C/OS. Also, youwould do thisif the processor

Returned Value

Notes/War nings

Example#l

(Intel 80x86, Rea-Mode, Large Model)

you are using does not allow you to increment OSI nt Nest i ng using asingleinstruction.

| SRx PRCC
PUSHA
PUSH
PUSH

MoV
MoV

CALL

POP
POP
POPA
| RET
I SRx ENDP

FAR

ES
DS

AX, DGROUP
DS, AX

FAR PTR _OSI nt Ent er

DS
ES

Save interrupted task's context

Rel oad DS

Notify puC/Os11 of start of ISR

Restore processor registers

Return from i nterrupt

Example#2

(Intel 80x86, ReakMode, Large Model)

Here we increment OSI nt Nest i ng because the 80x86 allow you to perform this operation indivisibly.

| SRx PRCC
PUSHA
PUSH
PUSH

MoV
MoV

I NC

FAR

ES
DS

AX, DGROUP
DS, AX

; Save interrupted task's context

: Rel oad DS

BYTE PTR _OSIntNesting ; Notify pd OS-11 of start of ISR




POP DS : Restore processor reaisters

POP ES
POPA
| RET ; Return frominterrupt
| SRx ENDP
void OSl nt Exit(void);
File Called from Code enabled by
0S CORE.C ISR only N/A

OSI nt Exi t () isusedto notify p C/OS-I1 that an ISR has completed. Thisallows u C/OS-1 to keep track of interrupt
nesting. OSI nt Exi t () isusedin conjunction with OSI nt Ent er () . When the last nested interrupt completes,
M CIOS1 will call the scheduler to determine if a higher priority task has been made ready to run. In this case, the
interrupt will return to the higher priority task instead of the interrupted task.

Arguments
NONE
Returned Value
NONE
Notes/War nings

This function must not be called by task level code. Also, if you decided to increment OSI nt Nest i ng you will still
needtocall OSI nt Exi t () .

Example
(Intel 80x86, RealMode, Large Model)

| SRx PROC FAR
PUSHA ; Save processor registers
PUSH ES
PUSH DS
CALL FAR PTR _OSIntExit ; Notify uC/OS 11 of end of ISR
POP DS ; Restore processor registers
POP ES
POPA
| RET ; Return to interrupted task

| SRx ENDP




OSMboxAccept()

voi d *OSMooxAccept (OS_EVENT *pevent);

File Called from Code enabled by
0S MBOX.C Task or ISR 0S MBOX_EN

OSMhoxAccept () alows you to check to see if a message is available from the desired mailbox. Unlike
OSMooxPend() ,0SMboxAccept () doesnot suspend thecalling task if amessageisnot available. |f amessageis
available, the message will be returned to your application and the contents of the mailbox will be cleared. Thiscall is
typically used by |SRs because an ISR is not allowed to wait for amessage at a mailbox.
Arguments

pevent isapointer to the mailbox wherethe messageisto bereceived from. Thispointer isreturned to your application
when the mailbox is created (see OSMbox Cr eat e( ) ).

Returned Value
A pointer to the message if oneisavailable or, NULL if the mailbox does not contain a message.

NotesWarnings

Mailboxes must be created before they are used.

Example

OS_EVENT * ConmVbox;

voi d Task (void *pdata)
{

voi d *mnsg;

pdata = pdat a;

for (;5) {
nseg = OSMboxAccept (Commvbox); /* Check mmil box for a nessage */
if (msg !'= (void *)0) {

/* Message received, process */
} else {

/* Message not received, do .. */

/* .. something else */




OSMboxCreate()

OS_EVENT *(O8MhoxCr eat e(void *nsg);

File Called from Code enabled by
0OS MBOX.C Task or Startup code OS MBOX_EN

OSMhoxCr eat e() isusedtocreateandinitializeamailbox. A mailbox isused to allow tasksor |SRsto send a pointer
sized variable (message) to one or more tasks.

Arguments

nsg isusedtoinitializethe contents of themailbox. Themailbox isempty whennmsg isaNULL pointer. The mailbox will
initialy contain a message when ns g isnon NULL.

Returned Value

A pointer to the event control block allocated to the mailbox. If no event control block isavailable, OSMoox Cr eat e( )
will return aNULL pointer.

Notes/War nings

Mailboxes must be created before they are used.

Example
OS_EVENT * Conmmivbox;
voi d mai n(voi d)
{
OSlnit(); /[* Initialize pl/ OS-11 */
Conmvbox = OSMoboxCreate((void *)0); /* Create COW nmi |l box */
CSstart(); /[* Start Multitasking */
}

OSMboxPend()

voi d *OsMhoxPend( CS_EVENT *pevent, |NT16U tinmeout, |NT8U *err);

File Called from Code enabled by
OS MBOX.C Task only OS MBOX_EN




OSMooxPend() isusedwhen atask desiresto receive amessage. The messageis sent to the task either by an ISR or
by another task. The message received is a pointer size variable and its use is application specific. If amessageis
present in the mailbox when OSMboxPend( ) is called then, the message is retrieved, the mailbox emptied and the
retrieved message isreturned to the caller. If no messageis present in the mailbox, OSMboxPend() will suspend the
current task until either amessageisreceived or auser specified timeoutexpires. |f amessage is sent to the mailbox and
multiple tasks are waiting for such amessage, i C/OS-11 will resume the highest priority task that iswaiting. A pended
task that has been suspended with OSTaskSuspend() can receive a message. The task will, however, remain
suspended until thetask is resumed by callingOSTaskResune( ).

Arguments

pevent isapointer tothemailbox wherethemessageisto bereceived from. Thispointer isreturned to your application
when the mailbox is created (see OSMbo xCr eat e( ) ).

ti meout isusedtoallow thetask to resume executionif amessageisnot received from the mailbox within the specified
number of clock ticks. Ati meout value of O indicates that the task desires to wait forever for the message. The
maximunt i meout is65535 clock ticks. Thetimeout value is not synchronized with the clock tick. The timeout count
starts being decremented on the next clock tick which could potentially occur immediately.

err isapointer to avariable which will be used to hold an error code. OSMboxPend() sets*err toeither:
1) OS_NO_ERR amessage was received
2) OS_TI MEQUT, amessage was not received within the specified timeout period

3) OS_ERR _PEND | SR,youcalledthisfunctionfroman|SRandp C/OS-I1 would haveto suspend the I SR.
In general, you should not call OSMooxPend() . pC/OS I checks for this situation in case you do

anyway.

Returned Value
OSMboxPend() returnsthe message sent by either atask oranISRand* err issetto OS_NO_ERR. If amessageis
not received within the specified timeout period, the returned message will be a NULL pointer and *err is set to
OS_TI MEQUT.

Notes/War nings

Mailboxes must be created before they are used.

Example

OS_EVENT * ConmVbox;

voi d CommTask(voi d *pdat a)

{
| NT8U err;
void *nsg;

pdata = pdat a;
for (;:) {




ﬁsg = OSMboxPend( Comrivbox, 10, &err);
if (err == OS_NO_ERR) {

/* Code for received nmessage */
} else {

/* Code for message not received within tinmeout */

}
}
}
I NT8U OSMhoxPost (OS_EVENT *pevent, void *nsg);
File Called from Codeenabled by
OS MBOX.C Task or ISR OS MBOX_EN

OSMboxPost () isusedto send amessageto atask through amailbox. A messageisapointer sizevariableanditsuse
isapplication specific. If thereisalready amessagein the mailbox, an error codeis returned indicating that the mailbox
isfull. OSMboxPost () will thenimmediately return to its caller and the message will not be placed in the mailbox. If
any task iswaiting for amessage at themailbox then, the highest priority task waitingwill receivethe message. If thetask
waiting for the message has a higher priority than the task sending the message then, the higher priority task will be
resumed and the task sending the message will be suspended. In other words, a context switch will occur.

Arguments

pevent is a pointer to the mailbox where the message is to be deposited into. This pointer is returned to your
application when the mailbox is created (seeOSMoox Cr eat e( ) ).

nsg istheactual message sent tothetask. ms g isapointer size variable and is application specific. You MUST never
post aNULL pointer because this indicates that the mailbox is empty.

Returned Value
OSMooxPost () returns one of these two error codes:

1) OS_NO_ERR, if the message was deposited in the mailbox
2) OS_MBOX_FULL, if the mailbox already contained a message

Notes/War nings

Mailboxes must be created before they are used.
Example




OS_EVENT * Conmivbox;
| NTSU ComRxBuf [ 100] ;

voi d CommilraskRx(voi d *pdat a)

{
I NT8U err;
pdata = pdat a;
for (;;) {
err = OSMboxPost ( Commvbox, (void *) & ommRxBuf[0]);
}
}

OSMboxQuery()

| NTBU CsMhoxQuer y(OS_EVENT *pevent, OS_MBOX_DATA *pdat a);

File Called from Code enabled by
OS MBOX.C Task or ISR OS MBOX_EN

OSMhoxQuer y() is used to obtain information about a message mailbox. Your application must alocate an
OS_MBOX_DATA datastructure which will be used to receive datafrom the event control block of the message mailbox.
OSMhoxQuer y( ) allowsyoutodetermine whether any task iswaiting for message(s) at the mailbox, how many tasks
arewaiting (by counting the number of 1sinthe. OSEvent Thl [ ] field, and examine the contents of the contents of
themessage. Y ou canusethetableOSNBi t sThl [ ] tofind out how many ones are set in agiven byte. Notethat the
sizeof . OSEvent Thl [] is established by the #define constant 0S_EVENT_TBL_SI ZE (seeUCOS_I | . H).

Arguments

pevent isa pointer to the mailbox. This pointer is returned to your application when the mailbox is created (see
OSMhoxCr eat e()).

pdat a isapointer to a data structure of type OS_MBOX_DATA which contains the following fields:

void OSMsg; /* Copy of the nessage stored in the mail box */
| NTBU OSEvent Tbl [ OS_EVENT_TBL_SI ZE]; /* Copy of the nmmil box wait list */
I NT8BU OSEvent G p;

Returned Value
OSMboxQuer y() returnsone of thesetwo error codes:

1) OS_NO_ERR, if the call was successful




2)OS_ERR_EVENT_TYPE, if you didn’t pass a pointer to a message mailbox
Notes’/Warnings
M essage mailboxes must be created before they are used.
Example

In this exampl e, we check the contents of the mailbox to see how many tasks are waiting for it.

OS_EVENT * Conm\box;

voi d Task (void *pdata)

{
OS_MBOXDATA nbox_dat a;
| NT8U err;
| NT8U nwai t ; /* Nunmber of tasks waiting on mail box */
| NT8U i;
pdata = pdat a;
for (;;) {
err = OSMooxQuery( Commivbox, &nmbox_dat a);
if (err == OS_NO ERR) {
nwait = O; /* Count # tasks waiting on mail box @ ff
i f (nmbox_data. OSEventGrp != 0x00) {
for (i = 0; i < OS_EVENT_TBL_SI ZE; i ++) {
nwait += OSNBIi t sTbhl [ mbox_dat a. OSEvent Tbl [i]];
}
}
}
}
}

OSMemCreate()

OS5 _MEM *OSMentCr eat e(voi d *addr, |NT32U nbl ks, | NT32U bl ksi ze, I NT8U *err);

File Called from Code enabled by
0OS MEM.C Task or startup code OS MEM _EN

OSMenTCr eat e() isusedto create and initialize a memory partition. A memory partition contains a user-specified

number of fixed-sized memory blocks. 'Y our application can obtain one of these memory blocks and when done, release
the block back to the partition.




Arguments

addr is the address of the start of a memory area that will be used to create fixed-sized memory blocks. Memory
partitions can either be created using static arrays or malloc’ ed during startup.

nbl ks contains the number of memory blocks available from the specified partition. You MUST specify at least 2
memory blocks per partition.

bl ksi ze specifiesthesize (in bytes) of each memory block withinapartition. A memory block MUST belarge enough
to hold at least a pointer.

err isapointer to avariable which will be used to hold an error code. OSMenCr eat e() sets*er r to either:

1) OS_NO_ERR, if the memory partition was created successfully.

2 OS_MEM | NVALI D_PART, if afree memory partition is not available.

3 OS_MEM | NVALI D_BLKS, if you didn't specify atleast 2 memory blocks per partition.

HOS_MEM | NVALI D_SI ZE, if you didn't specify ablock size that can at |east contain a pointer variable.
Returned Value

OSMentCr eat e() returns a pointer to the created memory partition control block if oneis available. If no memory
partition control block isavailable, OSMenCr eat e() will return aNULL pointer.

Notes/War nings

Memory partitions must be created before they are used.

Example
OS_MEM * Comrivem
I NTBU  CommBuf[ 16][ 128];
voi d mai n(voi d)
{
| NT8U err;
OSlnit(); [* Initialize pC/ Os 11 */
Comrivem = OSMenCr eat e( &ConmBuf [ 0] [ 0], 16, 128, &err);
OSstart (); /[* Start Miltitasking */
}

OSMemGet()

voi d *OsMentet (CS_MEM *pnem | NT8U *err);




File Called from Code enabled by
0S MEM.C Task or ISR 0OS MEM_EN

OSMenmCet (1) isused to obtain amemory block from amemory partition. Itisassumed that your applicationwill know

the size of each memory block obtained. Also, your application MUST return the memory block (usingOSMenPut () )

when it no longer needsit. You cancal OSMenGet () morethan once until all memory blocks are alocated.
Arguments

premisapointer tothememory partition control block that wasreturned to your applicationfromthe OSMentCr eat e( )
call.

err isapointer to avariable which will be used to hold an error code. OSMemGet () sets*err to either:

1) OS_NO_ERR, if amemory block was available and returned to your application.
2 OS_MEM NO_FREE_BLKS, if the memory partition doesn’t contain any more memory blocks to allocate.

Returned Value

OSMentet () returnsapointer to the allocated memory block if oneisavailable. If no memory block isavailablefrom
the memory partition, OSMemCet () will return aNULL pointer.

Notes/War nings
Memory partitions must be created before they are used.

Example

OS_MEM * Conmivem

voi d Task (void *pdata)

{
I NT8U *nsg;

pdata = pdat a;
for (;5) {
nsg = OSMenCet (Conmvem &err);
if (nsg !'= (INT8U *)0) {
. /* Menory block allocated, use it. */

}




OSMemPut()

| NT8U OshMenPut (OS_MEM *prmmem  voi d *pbl k) ;

File Called from Code enabled by
0OS MEM.C Task or ISR 0OS MEM_EN

OSMenPut () isused to return amemory block to amemory partition. It isassumed that you will return the memory
block to the appropriate memory partition.

Arguments

pmemisapointer to thememory partition control block that wasreturned to your application fromthe OSMentCr eat e()
call.

pbl k isapointer to the memory block to return back to the memory partition.
Returned Value
OSMenPut (1) returns one of the following error codes:
1) OS_NO_ERR, if amemory block was available and returned to your application.
2 OS_MEM FULL, if the memory partition cannot accept any more memory blocks. Thisissurely anindication
that something went wrong as you returned more memory blocks that you obtained using OSMenCet ().
Notes/War nings

Memory partitions must be created before they are used.

Example

OS_MEM * Commivem
I NT8BU *CommVeg;

voi d Task (void *pdata)

{
| NT8U err;

pdata = pdat a;
for (;5) {
err = OSMenPut (Commvem (void *) Conmvsg) ;
if (err == OS_NO_ERR) {
. /* Menory bl ock rel eased */




OSMemQuery()

I NT8U OSMenmQuer y(OS_MEM *prrem  OS_MEM DATA *pdat a) ;

File Called from Code enabled by
0S MEM.C Task or ISR 0S MEM_EN

OSMenQuer y( ) isused to obtain information about a memory partition. Basically, this function returns the same
information found in theOS_MEM data structure but, in a new data structure called OS_VEM _DATA OS_MEM DATA
also contains an additional field that indicates the number of memory blocksin use.

Arguments

premisapointer to the memory partition control block that wasreturned to your application fromthe OSMenCr eat e()
call.

pdat a isapointer to a data structure of type OS_MEM_DATAwhich contains the following fields:

voi d * OSAddr ; /* Points to beginning address of the menory partition */

voi d *OSFreeList; /* Points to beginning of the free list of menory bl ocks*/

I NT32U OSBI kSize; [/* Size (in bytes) of each nenory bl ock */

| NT32U OSNBI ks; /* Total nunber of blocks in the partition ]

I NT32U OSNFr ee; /* Number of nenory bl ocks free */

I NT32U OSNUsed; /* Number of nenory bl ocks used */
Returned Value

OSMenmuer y() awaysreturnsOS_NO_ERR.
Notes/Warnings
Memory partitions must be created before they are used.

Example

OS_MEM * Commivem
OS _MEM DATA nem dat a;

voi d Task (void *pdata)

{
| NT8U err;

pdata = pdat a;
for (;35) {




err = OSMenQuer v( Commivem &mem dat a):

OSQAccept()

voi d *OsQAccept (OS_EVENT *pevent);

File Called from Code enabled by
0S Q.C Task or ISR 0S Q EN

OSQAccept () alows you to check to see if a message is available from the desired message queue. Unlike
OSQPend( ) ,0SQAccept () doesnot suspendthecallingtask if amessageisnot available. If amessageis available,
the message will be returned to your application and the message will be extracted from the queue. Thiscall istypically
used by I SRs because an ISR is not allowed to wait for messages at a queue.

Arguments

pevent isapointer to the message queue where the message isto be received from. This pointer isreturned to your
application when the message queue is created (see OSQCr eat e( ) ).
Returned Value
A pointer to the message if oneisavailable or, NULL if the message queue does not contain a message.
Notes/War nings
M essage queues must be created before they are used.

Example

OS_EVENT *CommQ,

voi d Task (void *pdata)
{

voi d *mnsg;

pdata = pdat a;
for (;5) {
nmeg = OSQAccept (Comm); /* Check queue for a nmessage */
if (nmeg !'= (void *)0) {
. /* Message received, process */

} else {
/* Message not received, do .. */




/* .. sonethina el se */

OSQCreate()

OS_EVENT *OsQCreate(void **start, |NT8U size);

File Called from Code enabled by
0S 0Q.C Task or startup code OS Q EN

OSQCr eat e() isused to create amessage queue. A message queue is used to allow tasks or ISRs to send pointer
sized variables (messages) to one or more tasks. The meaning of the messages sent are application specific.

Arguments

st ar t isthebase address of the message storage area. A message storage areais declared as an array of pointersto
voi ds.

si ze isthe size (in number of entries) of the message storage area.
Returned Value

OSQCr eat e( ) returnsapointer totheevent control block allocated to thequeue. If noevent control blockis available,
OSQCr eat e() will return aNULL pointer.

Notes/War nings

Queues must be created before they are used.

Example

OS_EVENT * Comm1(Q,

voi d *Commvegl[ 10] ;

voi d mai n(voi d)

{
OSlnit(); /[* Initialize pC/OS 11 */
Comm) = OSQCr eat e( &Commivsg[ 0], 10); /* Create COW Q */
OSstart(); /* Start Ml titasking */




OSQFIlush()

| NT8U * O8QFI ush( OS_EVENT *pevent);

File Called from Code enabled by
0S Q.C Task or ISR 0S Q EN

OSQFI ush() isusedto empty the contents of the message queue and basically eliminate all the messages sent to the
gueue. This function takes the same amount of time to execute whether tasks are waiting on the queue (and thus no
messages are present) or the queue contains one or more messages.

Arguments

pevent isapointer to the message queue. This pointer is returned to your application when the message queue is
created (see OSQCr eat e() ).

Returned Value
One of the following codes:

1) OS_NO_ERR, the message queue was flushed.
2)OS_ERR_EVENT_TYPE, if you attempted to flush an object other than a message queue.

Notes/War nings

Queues must be created before they are used.

Example
OS_EVENT * Comm1Q,
voi d mai n(voi d)
{
| NT8U err;
CSlnit(); /* Initialize pC/ s 11 */
err = OSQFl ush(CommQ) ;
OSStart(); /* Start Multitasking */
}

OSQPend()

voi d *Os@Pend( CS_EVENT *pevent, |NT16U tineout, |NT8U *err);




File Called from Code enabled by
0S Q.C Task only 0S Q EN

OSQPend() isusedwhenatask desiresto receive messagesfrom aqueue. Themessages are sent to thetask either
by an ISR or by another task. The messages received are pointer size variables and their use is application specific. If
aat |east one messageispresent at the queuewhen OSQPend( ) iscalled, the message s retrieved and returned to
thecaller. If no messageis present at the queue, OSQPend( ) will suspend the current task until either amessage
isreceived or auser specified timeout expires. |f amessageis sent to the queue and multiple tasks are waiting for such
amessagethen, p C/OS-11 will resume the highest priority task that iswaiting. A pended task that has been suspended
withOSTaskSuspend() can receive amessage. The task will, however, remain suspended until the task is
resumed by callingOSTaskResume() .

Arguments

pevent isa pointer to the queue where the messages are to be received from. This pointer is returned to your
application when the queueis created (see OSQCr eat e( ) ).

ti meout isusedtoallow thetask to resumeexecutionif amessageisnot received from the mailbox within the specified
number of clock ticks. Ati meout value of O indicates that the task desires to wait forever for the message. The

maximumt i meout is65535 clock ticks. Thetimeout value is not synchronized with the clock tick. The timeout count
starts being decremented on the next clock tick which could potentially occur immediately.

€r I isapointer to avariable which will be used to hold an error code. OSQPend() sets*err to either:
1) OS_NO_ERR amessage was received
2) OS_TI MEQUT, amessage was not received within the specified timeout
3) OS_ERR _PEND | SR,youcaledthisfunctionfroman|SRandpu C/OS-11 would have to suspend the | SR.
In general, you should not call OSQPend( ) . pC/OS I checksfor this situation in case you do anyway.

Returned Value

OSQPend( ) returnsamessage sent by either atask oranISRand* er r isset to OS_NO_ERR. If atimeout occurred,
OSQPend() returnsaNULL pointer and sets*err toOS_TI MEQOUT.

Notes/War nings
Queues must be created before they are used.

Example

OS_EVENT * Conm®Q

voi d CommTask(voi d *dat a)

{
| NT8BU err;

void *nsg;

pdata = pdat a;




for (::) {

.msg = OSQPend( CommQ, 100, &err);
if (err == OS_NO_ERR) {

/* Message received within 100 ticks! */

} else {
/* Message not received, nust have tined out */

}

}
}
| NT8BU OsQPost (OS_EVENT *pevent, void *msg);
File Called from Code enabled by
0S Q.C Task or ISR 0S Q EN

OSQPost () isused to send amessage to atask through aqueue. A message isapointer sizevariable and its use
is application specific. If the message queueis full an error codeis returned to the caller. OSQPOSt () will then
immediately returntoitscaller and the message will not be placed in the queue. If any task iswaiting for amessage at the
queue then, the highest priority task will receive the message. If the task waiting for the message has a higher priority
than the task sending the message then, the higher priority task will be resumed and the task sending the message will
be suspended. In other words, a context switch will occur. Message queues are first-in-firstout (FIFO) which means
that the first message sent will be the first message received.
Arguments

pevent isapointer tothe queuewherethe messageisto be deposited into. Thispointer isreturnedto your application
when the queueis created (see OSQCr eat e() ).

neg istheactual message sent tothetask. msg isapointer size variable and is application specific. You MUST never
post aNULL pointer.

Returned Value
OSQPost () returnsone of thesetwo error codes

1) OS_NO_ERR, if the message was deposited in the queue
2)0OS_Q FULL, if the queueisalready full

Notes/Warnings



Queues must be created before they are used.
Example

OS_EVENT * Comm®Q
| NT8U ConmRxBuf [ 100] ;

voi d ConmTaskRx(voi d *pdat a)

{
| NTBU err;
pdata = pdat a;
for (;3) {
err = OSQPost (CommQ, (void *)&ComRxBuf[O0]);
if (err == OS_NO _ERR) {
. /* Message was deposited into queue */
} else {
/* Queue is full */
}
}
}
| NTBU OSQPost Front (OS_EVENT *pevent, void *msg);
File Called from Code enabled by
0S Q.C Task or ISR 0S Q EN

OSQPost Fr ont (1) isused to send amessage to atask through a queue. OSQPOSt Fr ont () behaves
very much like OSQPOSt () except that the message is inserted at the front of the queue. This means that
OSQPost Front () makes the message queue behave like a last-infirst-out (LIFO) queue instead of a
first-in-first-out (FIFO) queue. A message is a pointer size variable and its use is application specific. If the message
queueisfull an error codeisreturned to the caller. OSQPOSt Fr ont () will then immediately return to its caller
and the message will not be placed in the queue. If any task iswaiting for a message at the queue then, the highest
priority task will receive the message. If thetask waiting for the message has a higher priority than the task sending the
message then, the higher priority task will be resumed and the task sending the message will be suspended. In other
words, a context switch will occur.

Arguments



pevent isapointer tothe queue wherethe messageisto be deposited into. Thispointer isreturnedto your application
when the queue is created (see OSQCr eat e() ).

nsg istheactual message sent tothetask. msg isapointer size variable and is application specific. You MUST never
post aNULL pointer.

Returned Value
OSQPost Front () returns one of these two error codes

1) OS_NO_ERR, if the message was deposited in the queue
2)0S_Q _FULL, if the queueis already full

Notes/War nings

Queues must be created before they are used.
Example

OS_EVENT * ComQ
| NT8U ConmRxBuf [ 100] ;

voi d CommifaskRx(voi d *pdat a)

{
I NT8BU err;
pdata = pdat a;
for (;:) {
err = OSQPost Front (CommQ, (void *) & ConRxBuf[0]);
if (err == OS_NO_ERR) {
/* Message was deposited into queue */
} else {
/* Queue is full */
}
}
}

OSQQuery()

I NT8U OsQQuer y(OS_EVENT *pevent, OS_Q DATA *pdata);

File Called from Code enabled by
0S Q.C Task or ISR 0S MBOX_EN




OSQQuer y( ) isusedto obtain information about a message queue. Y our application must allocateanOS_Q_DATA
data structure which will be used to receive data from the event control block of the message queue. OSQQuer y()

allows you to determine whether any task is waiting for message(s) at the queue, how many tasks are waiting (by
counting the number of 1sinthe . OSEvent Thl [] field, how many messages are in the queue, what the message
gueuesizeis, and examinethe contents of the next messagethat would bereturned if thereis at least one message in the
gueue. You can usethetable OSNBi t sTbl [] tofind out how many ones are set in agiven byte. Note that the size
of . OSEvent Thl [] isestablished by the#def i ne constant OS_EVENT_TBL_SI ZE (seeUCOS_1 | . H).

Arguments

pevent isapointer to the message queue. Thispointer isreturned to your application when the queueis created (see
OSQCreat e() ).

pdat a isapointer to a data structure of type OS_Q_DATA which contains the following fields.

void *OSMsg; /* Next message if one avail abl e */
I NTL6U OSNMsgs; /* Nunber of messages in the queue */
I NT16U OSQSi ze; /* Size of the nmessage queue */
I NTBU OSEvent Thl [ OS_EVENT_TBL_SI ZE] ; /* Message queue wait |i st */

I NTBU OSEvent G p;

Returned Value
OSQQuer y () returns one of these two error codes:

1) OS_NO_ERR, if the call was successful
2)OS_ERR_EVENT_TYPE, if you didn’t pass a pointer to a message queue

Notes/War nings
M essage queues must be created before they are used.
Example

In this example, we check the contents of the message queue to see how many tasks are waiting for it.

OS_EVENT *CommQ,

voi d Task (void *pdata)

{
OS_Q _DATA qdat a;
| NT8U err;
| NT8U nwai t ; /* Nunber of tasks waiting on queue */
I NT8U i;

pdata = pdat a;
for (;:) {




err = OSOCQuerv(ComD. &adat a):
if (err == OS_NO_ERR) {
nwait = O; /* Count # tasks waiting on queue */
if (qdata.OSEventGrp != 0x00) {
for (i = 0; i < OS_EVENT_TBL_SIZE; i++) {
nwait += OSNBi t sTbl [ gdat a. OSEvent Tbhl [i]];

}
}
}
}
}
OSSchedLock()
voi d GSSchedLock(voi d);
File Called from Code enabled by
OS CORE.C Task or ISR N/A

OSSchedLock( ) isusedtoprevent task rescheduling until itscounterpart, OSSchedUnl ock( ), iscalled. Thetask
which calls OSSchedLock() keeps control of the CPU even though other higher priority tasks are ready to run.
However, interrupts will still be recognized and serviced (assuming interrupts are enabled). OSSchedLock() and
OSSchedUnl ock() must beusedin pair. i C/OS-11 allowsOSSchedLock() to be nested up to 254 levels deep.
Scheduling is enabled when an equal number of OSSchedUnl ock() calls have been made.

Arguments

NONE

Returned Value
NONE

Notes/War nings
After calling OSSchedLock( ), you application must not make any system call which will suspend execution of the
current task i.e, your application cannot call OSTi meDl y(), OSTi neDl yHVSM ), OSSenPend(),
OSMooxPend() or OSQPend() . Since the scheduler islocked out, no other task will be allowed to run and your

system will lock up.

Example

voi d TaskX(voi d *pdata)

{
pdata = pdat a;

for (;;) {

OSSchedLock() ; /* Prevent other tasks to run */




/* Code protected fromcontext switch */

OSSchedUnl ock(); /* Enable other tasks to run */

OSSchedUnlock()

voi d 0sSchedUnl ock(voi d);

File Called from Code enabled by
OS CORE.C Task or ISR N/A

OSSchedUnl ock() isusedtore-enabletask scheduling. OSSchedUnl ock() isused withOSSchedLock() in
pair. Scheduling is enabled when an equal number of OSSchedUnl ock() asOSSchedLock() have been made.

Arguments
NONE
Returned Value
NONE
Notes/War nings

After calling OSSchedLock( ), you application must not make any system call which will suspend execution of the
current task i.e., your application cannot call OSTi meDl y(), OSTi neDl yHMSM ), OSSenPend(),
OSMooxPend() or OSQPend() . Since the scheduler islocked out, no other task will be allowed to run and your
system will lock up.

Example
voi d TaskX(voi d *pdat a)
{ pdata = pdat a;
for (57) {
.CSSchedLock(); /* Prevent other tasks to run */
/* Code protected fromcontext switch */
osschedunl ock(); /* Enable other tasks to run *f
}




OSSemAccept()

I NT16U OSSemAccept (OS_EVENT *pevent);

File Called from Code enabled by
0S SEM.C Task or ISR 0S SEM_EN

OSSemAccept () alows you to check to see if a resource is available or an event occurred. Unlike
OSSenPend( ) ,0SSemAccept () doesnot suspend the calling task if the resource is not available. You
would use OSSemAccept () from an ISR to obtain the ssmaphore.

Arguments

pevent isapointer to the semaphore that guardsthe resource. This pointer isreturned to your application when the
semaphoreis created (seeOSSentCr eat e() ).

Returned Value
When the semaphore value is greater than 0 when OSSemA ccept() is called then, the semaphore valueis decremented
and the val ue of the semaphore before the decrement isreturned to your application. If, however, the semaphore value
is0then, theresourceisnot available and O is returned to your application.
Notes/War nings

Semaphores must be created before they are used.

Example

OS_EVENT *Di spSem

voi d Task (void *pdata)

{
I NT16U val ue;

pdata = pdat a;
for (;;) {
val ue = OSSemAccept (Di spSem); /* Check resource availability */
if (value > 0) {
. /* Resource avail able, process */

}




OSSemCreate()

OS_EVENT *(08Sentr eat e( WORD val ue) ;

File Called from Code enabled by
0OS SEM.C Task or startup code OS SEM_EN

OSSenCr eat e( ) isusedto create and initialize asemaphore. A semaphoreis usedto:
1) Allow atask to synchronize with either an ISR or atask
2) Gain exclusive access to aresource
3) Signal the occurrence of an event
Arguments
val ue istheinitial valueof the semaphore. Theinitial val ue of the semaphoreisallowed to be between 0 and 65535.

Returned Value

A pointer to the event control block allocated to the semaphore. |f no event control block isavailable, OSSenCr eat e()
will return aNULL pointer.

Notes/War nings

Semaphores must be created before they are used.

Example
OS_EVENT *Di spSem
voi d mai n(voi d)
{
OSlnit(); [* Initialize pC/ Cs-11 */
Di spSem = OSSenCreate(1l); /* Create Display Semaphore */
OSStart () ; /* Start Multitasking */
}

OSSemPend()

voi d CSSenPend( OS_EVENT *pevent, |NT16U timeout, |NT8U *err);

File | Called from | Code enabled by




| 0S SEM.C | Task only | OS SEM EN |

OSSenPend( ) isused when atask desiresto get exclusive accessto aresource, synchronize its activities with an
ISR, atask or until an event occurs. If atask callsOSSermPend( ) and the value of the semaphoreisgreater than O, then
OSSenPend( ) will decrement the semaphore and returntoitscaller. However, if the value of the semaphoreis equal
tozero,0SSenPend() placesthecalling task inthe waiting list for the semaphore. Thetask will thuswait until atask
or an I SR signal sthe semaphoreor, the specified timeout expires. If the semaphoreissignal ed beforethe timeout expires,

K C/OS- 1 will resumethe highest priority task that iswaiting for the semaphore. A pended task that has been suspended
withOSTaskSuspend( ) can obtain the semaphore. Thetask will, however, remain suspended until thetask is

resumed by cadling OSTaskResunme() .

Arguments

pevent isapointer to the semaphore. Thispointer isreturned to your application when the semaphoreis created (see
OSSenCreate()).

ti meout isusedtoallow thetask to resumeexecutionif amessageisnot received from the mailbox within the specified
number of clock ticks. Ati meout value of O indicates that the task desires to wait forever for the message. The
meaximumt i meout is65535 clock ticks. Thetimeout valueisnot synchronized with the clock tick. Thetimeout count
starts being decremented on the next clock tick which could potentially occur immediately.

err isapointer to avariable which will be used to hold an error code. OSSenPend() sets* er r to either:
1) OS_NO_ERR thesemaphoreisavailable
2) OS_TI MEQUT, the semaphore was not signaled within the specified timeout

3) OS_ERR _PEND I SR,youcalledthisfunctionfroman|SRandu C/OS-11 would have to suspend the | SR.
In general, you should not call OSMooxPend() . pC/OS 1 checks for this situation in case you do

anyway.
Returned Value
NONE
Notes/War nings
Semaphores must be created before they are used.

Example

OS_EVENT *Di spSem

voi d Di spTask(void *pdat a)

| NTBU err;

pdata = pdat a;
for (;:5) {




bSSerrPend(DispSem 0, &err);
. /* The only way this task continues is if ..*/
/* ...the semaphore is signal ed! */

OSSemPost()

| NT8BU CSSenPost (OS_EVENT *pevent);

File Called from Code enabled by
OS SEM .C Task or ISR OS SEM_EN

A semaphore is signaled by calling OSSenPost (). If the semaphore value is greater than or equal to zero, the
semaphoreisincremented andOSSenPost () returnstoitscaller. If tasksarewaiting for the semaphoreto besignaled
then, OSSenPost () removesthe highest priority task pending (waiting) for the semaphore from the waiting list and
makesthistask ready to run. The scheduler isthen called to determineif the awakened task is now the highest priority
task ready to run.

Arguments

pevent isapointer to the semaphore. Thispointer isreturned to your application when the semaphoreis created (see
OSSenCreate()).

Returned Value
OSSenPost () returns one of these two error codes

1) OS_NO_ERR, if the semaphore was successfully signaled
2)OS_SEM OVF, if the semaphore count overflowed

Notes/War nings

Semaphores must be created before they are used.
Example

OS_EVENT *Di spSem

voi d TaskX(void *pdat a)

{
| NTBU err;

pdata = pdat a;
for (;;) {

err = OSSenPost (Di spSen) ;




if (err == OS NO ERR) {
. /* Semaphore signal ed */

} else {
/* Semaphore has overflowed */

OSSemQuery()

| NT8U CsSemQuer y( OS_EVENT *pevent, OS_SEM DATA *pdata);

File Called from Code enabled by
0S SEM.C Task or ISR 0S SEM_EN

OSSenmuer y () isusedto obtaininformation about asemaphore. Y our application must allocate an OS_SEM _DATA
data structure which will be used to receive data from the event control block of the semaphore. OSSenQuer y()

allows you to determine whether any task is waiting on the semaphore, how many tasks are waiting (by counting the
number of 1sin the. OSEvent Tbl [ ] field, and obtain the semaphore count. Y ou can usethetable OSNBi t sTbl [ ]

to find out how many ones are set in a given byte. Note that the size of . OSEvent Tbl [] is established by the
#def i ne constant OS_EVENT_TBL_SI ZE (seeUCOS_1 1 . H.

Arguments

pevent isapointer to the semaphore. Thispointer isreturned to your application when the semaphoreiscreated (see
OSSenCreate()).

pdat a isapointer to a data structure of type OS_SEM_DATAwhich contains the following fields.

| NT16U OSCnt ; /* Current semmphore count % ]
I NTBU OSEvent Tbl [ OS_EVENT_TBL_SI ZE]; [/* Semaphore wait |i st */
| NTBU OSEvent G p;

Returned Value
OSSenuer y() returns one of these two error codes:

1) OS_NO_ERR, if thecall was successful
2)OS_ERR_EVENT_TYPE, if you didn’t pass a pointer to a semaphore

Notes/War nings
Semaphores must be created before they are used.

Example




In this example, we check the contents of the semaphore to determine the highest priority task that iswaiting for it.

OS_EVENT *Di spSem

voi d Task (void *pdata)

{
OS_SEM DATA sem dat a;
| NT8U err;
| NT8U hi ghest; /* Highest priority task waiting on semaphore */
| NT8U X;
| NT8U y;

pdata = pdat a;
for (;:) {

err = OSSenfuery(Di spSem &sem data);
if (err == OS_NO_ERR) {
if (sem.data. OSEventGrp != 0x00) {

y = OSUnMapTbl [ sem dat a. OSEvent Gr p] ;
X = OSUnMapTbl [ sem dat a. OSEvent Tbl [y]];
hi ghest = (y << 3) + x;
}
}
}
}
void CsStart(void);
File Called from Code enabled by
OS CORE.C Startup code only N/A

OSSt art () isused to start multitasking under p C/OSHI.

Arguments

NONE

Returned Value
NONE

Notes/War nings




OSI ni t () must be called prior to callingOSSt art (). OSSt art () should only called once by your application
code. If youdo call 0SSt art () morethan once, OSSt art () will not do anything on the second and subsequent
cals.

Example
voi d mai n(voi d)
{ /* User Code */
bSInit(); /* Initialize pd/ OS 11 */
/* User Code */
: .OSStart(); /* Start Ml titasking */

OSStatinit()

void CSStatlnit(void);

File Called from Code enabled by

OS CORE.C Startup code only OS TASK_STAT EN &&
0OS TASK_CREATE _EXT__EN

0SSt at | ni t () isusedtohaveuC/OS-II determinethe maximum value that a 32-bit counter can reach when no other
task is executing. This function must be called when there is only one task created in your application and, when
multitasking has started. In other words, this function must be called from the first, and only created task.

Arguments
NONE
Returned Value
NONE
Notes/War nings
NONE

Example

voi d First AndOnl yTask (void *pdata)
{

OSStatlnit(); /* Compute CPU capacity with no task running */




OSTaskCreate( .): /* Create the other tasks */
OSTaskCreate(..);

for (;:) {

OSTaskChangePrio()

I NT8BU OSTaskChangePri o( | NT8U ol dpri o, |NT8U newprio);

File Called from Code enabled by
OS TASK.C Task only OS TASK_CHANGE_PRIO_EN

OSTaskChangePri o() alowsyou to change the priority of atask.
Arguments
ol dpri o isthe priority number of the task to change.
newpr i o isthe new task's priority.
Returned Value
OSTaskChangePri o() returnsone of these error codes:
1) OS_NO_ERR, the task's priority was changed
2 OS_PRI O_| NVALI D, if either the old priority or the new priority exceeds the maximum number of tasks
allowed
3 OS_PRI O_EXI ST, if newp aready existed
4 OS_PRI O_ERR, thereisnotask withthespecified ‘old' priority (i.e. the task specified by ol dpr i o does not
exist)
Notes/War nings

The desired priority must not have aready been assigned, otherwise, an error code is returned. Also,
OSTaskChangePri o() verifiesthat the task to change exist.

Exampl e

voi d TaskX(void *data)

| NTBU err;

for (;;) {




err = OSTaskChanaePri o(10. 15):

OSTaskCreate()

I NTBU OSTaskCreate(void (*task)(void *pd), void *pdata, OS_STK *ptos, |INT8U prio);

File Called from Code enabled by
0OS TASK.C Task or startup code N/A

OSTaskCr eat e() alows an application to create a task so it can be managed by i C/OSII. Tasks can either be
created prior to the start of multitasking or by arunning task. A task cannot be created by an ISR. A task MUST be
written as an infinite loop as shown in the example below and, MUST NOT return.

OSTaskCreate() is used for backward compatibility with pC/OS and when the added features of
OSTaskCr eat eExt () arenot needed.

Depending on how the steck frame was built, your task will either have interrupts enable or disabled. Y ou will need to
check with the processor specific code for details.

Arguments
t ask isapointer to the task's code.

pdat aisapointer to an optional dataareawhich canbe used to pass parametersto the task when it is created. Where
the task is concerned, it thinks it was invoked and passed the argument pdat a as follows:

voi d Task (void *pdata)

{
. /* Do sonething with 'pdata’ */
for (;;) { /* Task body, always an infinite |oop. */
/* Must call one of the foll ow ng services: */
/* OSMhoxPend() */
/* OSQPend() */
/* OSSenPend() */
[ * OSTi neDl y() */
/* OSTi neDl yHVSM ) */
/* OSTaskSuspend() (Suspend sel f) */
/* OSTaskDel () (Delete self) */
}
}

pt os is a pointer to the task's top of stack. The stack is used to store local variables, function parameters, return
addresses and CPU registersduring aninterrupt. The size of the stack isdetermined by the task's requirements and, the




anticipated interrupt nesting. Determining the size of the stack involves knowing how many bytes are required for
storage of local variablesfor the task itself, all nested functions, aswell as requirements for interrupts (accounting for
nesting). If the configuration constantOS_ STK_GROWH isset to 1, the stack isassumed to grow downward (i.e. from
high memory to low memory). pt os will thus need to point to the highest valid memory location on the stack. If
OS_STK_CGROWH is set to 0, the stack is assumed to grow in the opposite direction (i.e. from low memory to high
memory).

pri oisthetask priority. A unique priority number must be assigned to each task and the lower the number, the higher
the priority.

Returned Value
OSTaskCr eat e( ) returns one of the following error codes:

1) OS_NO_ERR,if thefunction was successful
2) OS_PRI O_EXI ST, if therequested priority already exist

Notes/War nings
The stack MUST be declared with theOS_STK type.

A task MUST alwaysinvokeoneof theservicesprovided by p C/OS-11 to either wait for time to expire, suspend the task
or, wait an event to occur (wait on amailbox, queue or semaphore). Thiswill alow other tasksto gain control of the CPU.

You should not use task priorities 0, 1, 2, 3 and OS_LOWEST_PRI O 3, OS_LOWNEST_PRI O 2,
OS_LOWEST_PRI O 1 andOS_LOWEST_PRI Obecausethey arereserved for uC/OS|I's use. Thisthusleavesyou
with up to 56 application tasks.

Example#l

This examples shows that the argument that Task1() will receiveisnot used and thus, the pointer pdat a is set to
NULL. Notethat | assumed that the stack grows from high memory to low memory because | passed the address of the
highest valid memory location of thestack Task 1St k[ ] . If the stack growsin the opposite direction for the processor
you are using, you will need to passTask 1St k[ 0] asthe task’s top-of-stack.

OS_STK *Task1St k[ 1024] ;
| NT8U Task1lDat a;

voi d mai n(voi d)
{
I NT8U err;

OSlnit(); /* Initialize pC/Os 11 */

OSTaskCr eat e( Task1,
(void *)&TasklDat a,
&Task1St k[ 1023],
25);

OSStart(); /* Start Multitasking */




voi d Taskl(void *pdata)

{
pdata = pdat a;
for (;5) {
. /* Task code */
}
}
Example#2

Itispossibleto createa'generic' task that can beinstantiated morethan once. For example, atask can handleaserial port
and thetask would be passed the address of adata structure that characterizes the specific port (i.e. port address, baud
rate, etc.).

OS_STK *Conmil St k[ 1024] ;
COWM DATA CommilDat a; /* Data structure containing COW port */
/* Specific data for channel 1 */

0S_STK  *Conm2St k[ 1024] ;

COVM _DATA CommiDat a; /* Data structure containing COW port */
/* Specific data for channel 2 */

voi d mai n(voi d)

{
| NT8U err;
OSlnit(); [* Initialize pd os-11 */
OSTaskCr eat e( Commirask,
(void *)&ConmilDat a,
&Comml St k[ 1023]
25);
OSTaskCr eat e( Commirask,
(void *)&ConmRDat a,
&Comm2St k[ 10237,
26);
OSstart(); /[* Start Miltitasking */
}
voi d Conmlask(voi d *pdat a) /* Generic conmunication task */
{

for (;;) {

/* Task code 2y




OSTaskCreateExt()

I NT8U OSTaskCr eat eExt (void (*task)(void *pd), void *pdata, OS_STK *ptos, |NT8U prio,
I NT16U, id, OS_STK *pbos, |NT32U stk_size, void *pext, |INT16U opt);

File Called from Code enabled by
0OS TASK.C Task or startup code N/A

OSTaskCr eat eExt () alowsanapplicationto createatask soitcanbemanaged by p C/OS 1. Thisfunction serves
the same purposeasOSTaskCr eat e() exceptthat it allowsyou to specify additional information about your task to
L CIOS 1. Taskscan either be created prior to the start of multitasking or by arunning task. A task cannot be created by
an ISR. A task MUST be written as an infinite loop as shown in the example code below and, MUST NOT return.

Depending on how the stack frame was built, your task will either have interrupts enable or disabled. Y ou will need to
check with the processor specific codefor details. Y ou should notethat thefirst four arguments are exactly the same as
the onesfor OSTaskCr eat e() . Thiswas done to simplify the migration to this new, and more powerful function.

Arguments
t ask isapointer to the task's code.

pdat aisapointer toan optional dataareawhich can beused to pass parametersto the task when it is created. Where
the task is concerned, it thinks it was invoked and passed the argument pdat a as follows:

voi d Task (void *pdata)

{
. /* Do sonething with 'pdata’ */
for (;;) { /* Task body, always an infinite |oop. */
/* Must call one of the foll ow ng services: */
/* OSMhoxPend() */
/* OSQPend() */
/* OSSenPend() */
[ * OSTi neDl y() */
/* OSTi meDl yHVSM ) */
/* OSTaskSuspend() (Suspend sel f) */
/* OSTaskDel () (Delete self) */
}
}

pt os is a pointer to the task's top of stack. The stack is used to store local variables, function parameters, return
addresses and CPU registersduring aninterrupt. Thesize of thisstack isdetermined by thetask's requirements, and the
anticipated interrupt nesting. Determining the size of the stack involves knowing how many bytes are required for
storage of local variablesfor the task itself, all nested functions, aswell as requirements for interrupts (accounting for
nesting). If the configuration constantOS_STK_GROWIH isset to 1, the stack isassumed to grow downward (i.e. from
high memory to low memory). pt os will thus need to point to the highest valid memory location on the stack. |f



OS_STK_CROWH is set to 0, the stack is assumed to grow in the opposite direction (i.e. from low memory to high
memory).

pri oisthetask priority. A unique priority number must be assigned to each task and the lower the number, the higher
the priority (i.e. theimportance) of the task.

i disthetask’sID number. Atthistime, the ID is not currently used in any other function and has simply been added
inOSTaskCr eat eExt () for future expansion. You should set thei d to the same value asthetask’s priority.

pbos isapointer tothetask'sbottom of stack. If theconfiguration constant OS_STK_GROWIH is set to 1, the stack is
assumed to grow downward (i .e. from high memory to low memory) and thus,pbos must point to the lowest valid stack
location. IfOS_STK_GROWIHis set to 0, the stack is assumed to grow in the opposite direction (i.e. from low memory
to high memory) and thus, pbos must point to the highest valid stack location. pbos is used by the stack checking
function OSTask St kChk() .

st k_si ze isused to specify the size of the task’s stack (in number of elements). If OS_STK is set to | NT8U, then
st k_si ze correspondsto the number of bytesavailableonthestack. IfOS_STKissettol NT16U, thenst k_si ze
contains the number of 16-bit entries available on the stack. Finally, if OS_STKis set to | NT32U, then st k_si ze
contains the number of 32-bit entries available on the stack.

pext isapointer to auser supplied memory location (typically adatastructure) whichisused asaTCB extension. For
exampl e, this user memory can hold the contents of floating-point registers during a context switch, the time each task
takes to execute, the number of times the task is switched-in, etc.

opt contains task specific options. The lower 8 bits are reserved by p C/OS-I1 but you can use the upper 8 bits for
application specific options. Each option consist of abit. Theoptionisselected whenthebitisset. Thecurrent version
of uC/OS-11 supports the following options:

OS_TASK_OPT_STK_CHK specifieswhether stack checking isallowed for the task.
OS_TASK_OPT_STK_CLRspecifies whether the stack needs to be cleared.

OS_TASK_OPT_SAVE_FP specifies whether floating-point registers will be saved the stack needs to be
cleared.

you should refer to uCOS_11.H for other options, i.e. OS_TASK_OPT_??7.
Returned Value
OSTaskCr eat eExt () returnsone of the following error codes:

1) OS_NO_ERR, if the function was successful
2)OS_PRI O_EXI ST, if the requested priority already exist

Notes/War nings
The stack MUST be declared with theOS_STK type.

Atask MUST alwaysinvokeoneof theservicesprovided by u C/OS-11 to either wait for time to expire, suspend the task
or, wait an event to occur (wait on amailbox, queue or semaphore). Thiswill allow other tasksto gain control of the CPU.

You should not use task priorities 0, 1, 2, 3 and OS LONEST_PRI G 3, OS_LOWNEST_PRI O 2,
OS_LOWEST_PRI G 1 andOS_LOWEST_PRI Obecausethey arereserved for uC/OSII’s use. Thisthusleavesyou
with up to 56 application tasks.



Example#l

Thetask control block isextended (1) using a‘user defined’ data structure called TASK_USER_DATA (2) which, in this
case, contains the name of the task aswell as other fields. The task nameisinitialized with thest r cpy() standard
library function (3). Note that stack checking has been enabled (4) for this task and thus, you are allowed to call
OSTaskSt kChk(). Also, we assume here that the stack grown downward (5) on the processor used (i.e.
OS_STK_CGROWIHissetto 1). TOS standsfor ‘ Top-Of-Stack’” and BOS stands for ‘ BottomOf_Stack’.

typedef struct { /* (2) User defined data structure */
char TaskNarme[ 20] ;
I NT16U TaskCtr;
I NT16U TaskExecTi ne;
I NT32U TaskTot ExecTi ne;
} TASK _USER DATA;

OS_STK *TaskSt k[ 1024] ;
TASK_USER_DATA  TaskUser Dat a;

voi d mai n(voi d)

{
I NT8U err;
CSlnit(); [* Initialize pC/ Os-11 */
strcpy(TaskUser Dat a. TaskNane, "MyTaskNane"); [/* (3) Name of task */
err = OSTaskCreat eExt ( Task,
(void *)O0,
&TaskSt k[ 1023], /* (5) Stack grows down (TQOS) */
10,
10,
&TaskSt k[ 0], /* (5) Stack grows down (BOS) */
1024,
(void *)&TaskUser Dat a, /* (1) TCB Extension */
OS_TASK_OPT_STK_CHK) ; /* (4) Stack checking enabled */
OSsStart(); /* Start Multitasking */
}

voi d Task(void *pdata)

{
pdata = pdat a; /* Avoid conpiler warning */
for (;35) {
. /* Task code */
}
}

Example#2




Hereweare creating atask but thistime, on aprocessor for which the stack growsupward (1). Thelntel MCS-251isan
example of such a processor. It isassumed that OS_STK_GROWHis set to 0. Note that stack checking has been
enabled (2) for thistask and thus, you areallowed to call OSTask St kChk () . TOSstandsfor ‘ Top-Of-Stack’ and BOS
stands for ‘BottomOf_Stack’.

OS_STK *TaskSt k[ 1024] ;

voi d mai n(voi d)

{
| NT8U err;
CSlnit(); [* Initialize pC/Gs-11 */
err = OSTaskCr eat eExt ( Task,
(void *)O0,
&TaskSt k[ 0] , /* (1) Stack grows up (TOS) */
10,
10,
&TaskSt k[ 1023] , /* (1) Stack grows up (BOS) */
1024,
(void *)0,
OS_TASK_OPT_STK_CHK) ; /* (2) Stack checking enabl ed */
OSstart(); [* Start Miltitasking */
}

voi d Task(void *pdata)

{
pdata = pdat a; /* Avoid conpil er warning */
for (;7) {
/* Task code */
}




OSTaskDel()

I NT8BU OSTaskDel (1 NT8U pri0);

File Called from Code enabled by
0S TASK.C Task only OS TASK_DEL_EN

OSTaskDel () alowsyour application to delete a task by specifying the priority number of the task to delete. The
calling task can be deleted by specifying itsown priority number or OS_PRI O_SELF if the task doesn't know itsown
priority number. The deleted task is returned to thedormant state. The deleted task may be created by calling either
OSTaskCr eat e() or OSTaskCr eat eExt () to make the task active again.

Arguments

pri oisthetask'spriority number to delete. Y ou can deletethecalling task by passingOS_PRI O_SELF in which case,
the next highest priority task will be executed.

Returned Value
OSTaskDel () returnsone of the following error codes:

OS_NO_ERR if thetask didn't delete itself

OS_TASK _DEL_ | DLE, you tried to delete the idle task

OS_TASK_DEL_ERR, the task to delete does not exist

OS_PRI O_I NVALI D, if you specified atask priority higher thanOS_LOWEST_PRI O
OS_TASK_DEL_I SR, you tried to delete atask from an ISR

gLsLdE

Notes/Warnings
OSTaskDel () will verify that you are not attempting to delete the p C/OS I'sidle task.

You must be careful when you delete a task that owns resources. Instead, you should consider using
OSTaskDel Req() whichwould be a safer approach.

Example
voi d TaskX(void *pdat a)
| NT8U err;
for (;:) {
err = OSTaskDel (10); /* Delete task with priority 10 */
if (err == OS_NO_ERR) {
. /* Task was del et ed */




OSTaskDelReq()

| NTBU OSTaskDel Req( 1 NT8U prio);

File Called from Code enabled by
0S TASK.C Task only OS TASK_DEL_EN

OSTaskDel Req() alows your application to request that a task deletes itself. Basically, you would use
OSTaskDel Req() when you need to delete a task that can potentially own resources (e.g. the task may own a
semaphore). Inthiscase, you don't want to delete the task until the resource is released. The requesting task calls
OSTaskDel Req( ) toindicatethat thetask needsto bedeleted. Deletion of thetask is, however, deferred to the task
being deleted. In other words, thetask isactually deleted when it regains control of the CPU. For example, supposetask
#10 needs to be deleted. The task desiring to delete this task (example task #5) would call OSTaskDel Req( 10).
When task #10 getsto executeit would call OSTaskDel Req( OS_PRI O_SELF) and monitorsthe returned value. If
the return value is OS_TASK_DEL__REQ then task #10 is asked to delete itself. At this point, task #10 would call
OSTaskDel (OS_PRI O SELF). Task #5 would know whether task #10 has been deleted by calling
OSTaskDel Req( 10) and check thereturn code. If the return codeisOS_TASK_NOT_EXI ST then task #5 would
know that task #10 has been deleted. In this case, task #5 may have to check periodically, though.

Arguments

pri o isthetask's priority number of thetask to delete. If you specify OS_PRI O_SELF, then you are asking whether
another task wants you to be deleted.

Returned Value
OSTaskDel Req() returns one of the following error codes:

1) OS_NO_ERR,if thetask deletion has been registered

2 OS_TASK_NOT_EXI ST, if thetask does not exist. The requesting task can monitor thisreturn codeto see
if the task actually got deleted.

3 OS_TASK_DEL_I DLE, you asked to delete the idle task (thisis obviously not allowed).

4) OS_PRI O_| NVALI D, if you specified atask priority higher than OS_LOWEST_PRI O or, you have not
specified OS_PRI O_SELF.

5 OS_TASK DEL_REQ, if atask (possibly another task) requested that the running task be deleted.

NotesWar nings
OSTaskDel Req() will verify that you are not attempting to delete the u C/OSHI's idle task.

Example

voi d TaskThat Del et es(voi d *pdat a) /* My priority is 5 */

{
| NT8U err;




for (::) {

err = OSTaskDel Req(10); /* Request task #10 to delete itself */
if (err == OS_NO_ERR) {

err = OSTaskDel Req(10);

while (err !'= OS_TASK _NOT_EXI ST) {

OSTi meDl y(1); /* Wait for task to be del eted */
}
. [* Task #10 has been del et ed */
}
}
}
voi d TaskToBeDel et ed(voi d *pdat a) /* My priority is 10 */
{
pdat a = pdat a;
for (5;) {
OSTi meDl y(1);
i f (OSTaskDel Req(OS_PRI O SELF) == OS_TASK DEL_REQ {
/* Rel ease any owned resources; */
/* De-allocate any dynam c nenory; */
OSTaskDel (OS_PRI O_SELF) ;
}
}
}
| NT8BU OSTaskResune( | NT8U prio);
File Called from Code enabled by
0S TASK.C Task only OS TASK_SUSPEND_EN

OSTaskResune() alowsyour application to resume atask that was suspended through the OSTask Suspend()
function. Infact, OSTaskResume( ) istheonly function that can ‘unsuspend’ a suspended task.

Arguments
pri o specifiesthe priority of the task to resume.
Returned Value
OSTaskResune() returns one of thefollowing error codes:

1) OS_NO_ERR,if thecall was successful.




2 OS_TASK _RESUME_PRI O, thetask you are attempting to resume does not exist.
3 OS_TASK_NOT_SUSPENDED, the task to resume has not been suspended.

Notes/War nings

NONE
Example
voi d TaskX(void *pdata)
{
| NT8U err;
for (;;) {
err = OSTaskResune(10); /* Resunme task with priority 10 */
if (err == OS_NO_ERR) {
. /* Task was resuned */
}
}
}
I NT8BU OSTaskSt KChk (1 NT8U pri o, I NT32U *pfree, |NT32U *pused);
File Called from Code enabled by
OS TASK.C Task code OS TASK_CREATE_EXT

OSTaskSt kChk() isused to determine atask’s stack statistics. Specifically, OSTaskSt kChk() computes the

amount of free stack space aswell asthe amount of stack space used by the specified task. Thisfunction requiresthat
the task be created with OSTaskCr eat eExt () and that you specify OS_TASK_OPT_STK_CHK in the opt

argument.

Stack sizingisdoneby ‘walking’ from the bottom of the stack and counting the number of zero entries on the stack until
anon-zero valueisfound. Thisof course assumesthat the stack is cleared when thetask iscreated. For that purpose,
you need to set OS_TASK_STK_CLRto 1 in your configuration. You could set OS_TASK_STK_CLRto 0 if your
startup code clears all RAM and you never delete your tasks. This would reduce the execution time of
OSTaskCr eat eExt ().

Arguments

pri oisthepriority of thetask you desireto obtain stack information about. Y ou can check the stack of the calling task
by passing OS_PRI O_SELF.




pdat a isapointer to avariable of typeOS_STK_DATAwhich contains the following fields.

I NT32U OSFr ee; /* Nunmber of bytes free on the stack */
I NT32U OSUsed,; /* Number of bytes used on the stack */
Returned Value

OSTask St kChk () returns one of the following error codes:

1) OS_NO_ERR,if you specified valid arguments and the call was successful.

2) OS_PRI O_I NVALI D, if you specified a task priority higher than OS_LOWEST_PRI O, or you didn't
specify OS_PRI O_SELF.

3) OS_TASK_NOT_EXI ST, if the specified task does not exist.

4) OS_TASK_OPT_ERR, if you did not specify OS_TASK_OPT_STK_CHK when the task was created by
OSTaskCr eat eExt () or, you created the task by using OSTaskCr eat e() .

Notes/War nings

Execution time of this task depends on the size of the task’s stack and is thus non-deterministic.

Your application can determine the total task stack space (in number of bytes) by adding the two fields . OSFr ee
and . OSUsed.

Technically, this function can be called by an | SR but, because of the possibly long execution time, it is not advisable.

Example

voi d Task (void *pdata)

{
OS_STK_DATA st k_dat a;
| NT32U stk_size;
for (;:) {
err = OSTaskSt kChk( 10, &stk_data);
if (err == OS_NO_ERR) {
stk_size = stk_data. OSFree + stk_data. OSUsed;
}
}
}

OSTaskSuspend()

I NT8BU CSTaskSuspend( | NT8U pri0);

File Called from Code enabled by
0S TASK.C Task only 0S TASK_SUSPEND EN




OSTaskSuspend() alowsyour application to suspend (or block) execution of atask unconditionally. The calling
task can be suspended by specifying its own priority number or OS_PRI O_SELF if the task doesn't know its own
priority number. In this case, another task will need to resume the suspended task. If the current task is suspended,
rescheduling will occur and p C/OS-11 will run the next highest priority task ready to run. The only way to resume a
suspended task isto call OSTaskResune() .

Task suspension isadditive. Thismeansthat if the task being suspended is delayed until ‘n’ ticks expire then the task
will be resumed only when both the time expires and the suspensionisremoved. Also, if the suspended task iswaiting
for asemaphore and the semaphore is signaled then the task will be removed from the semaphore wait list (if it wasthe
highest priority task waiting for the semaphore) but execution will not be resumed until the suspension isremoved.

Arguments

pri o specifiesthe priority of the task to suspend. Y ou can suspend the calling task by passing OS_PRI O_SELF in
which case, the next highest priority task will be executed.

Returned Value
OSTaskSuspend() returnsone of the following error codes:

1) OS_NO _ERR,if thecall was successful.

2 OS_TASK_SUSPEND | DLE, if you attempted to suspend u C/OS-II's idle task. This is of course not
allowed.
3 OS_PRI O_| NVALI D, if you specified a priority higher than the maximum allowed (i.e. you specified a

priority >= OS_LOWEST_PRI O) or, you didn't specify OS_PRI O_SELF.
4) OS_TASK_SUSPEND_PRI O, if the task you are attempting to suspend doesnot exist.

Notes/War nings
OSTaskSuspend() and OSTaskResume() must beusedin pair.

A suspended task can only be resumed by OSTaskResumne() .

Example
voi d TaskX(void *pdat a)
{
| NT8U err;
for (;:) {
err = OSTaskSuspend(OS_PRI O _SELF); /* Suspend current task */
/* Execution continues when ANOTHER task .. */
/* .. explicitly resumes this task. */




OSTaskQuery()

| NT8BU OSTaskQuery (I NT8U prio, OS TCB *pdata);

File Called from Code enabled by
0S TASK.C Task or ISR N/A

OSTaskQuer y() allows your application to obtain information about a task. Your application must allocate an
OS_TCBdata structure that will be used to receive a ‘snapshot’ of the desired task’s control block. Your copy will
contain every field in the OS_TCB structure. Y ou should be careful when accessing the contents of the OS_TCB
structure, especially OSTCBNext and OSTCBPr ev because they will point to the next and previousQOS_TCB in the
chain of created tasks, respectively.

Arguments

pri o isthe priority of the task you wish to obtain data from. Y ou can obtain information about the calling task by
specifying OS_PRI O_SELF.

pdat a isapointer to astructure of type OS_TCBwhich will contain a copy of the task’s control block.
Returned Value
OSTaskQuer y() returnsone of thesetwo error codes:

1) OS_NO_ERR,if thecall was successful.
2 OS_PRI O_ERR, if you are trying to obtain information from an invalid task.

Notes/Warnings

The availablefieldsin the task control block depends on the following configuration options (see OS_CFG.H):

0S_TASK_CREATE_EN
0S_Q EN
0S_MBOX_EN
OS_SEM EN
0S_TASK_DEL_EN

Example

voi d Task (void *pdata)
{

OS_TCB task_data;

| NT8U err;

voi d *pext ;

| NT8U st at us;

pdata = pdat a;
for (;5) {




err = OSTaskQuery(OS_PRI O SELF, &task_data);

if (err == OS_NO_ERR) {
pext = task_data. OSTCBExtPtr; /* Get TCB extension pointer */
status = task_data. OSTCBSt at ; /* Get task status % ff

}
}
}
OSTimeDly()
voi d OSTi meDl y( | NT16U ti cks);
File Called from Code enabled by
OS TIME.C Task only N/A

OSTi meDl y () allowsatask to delay itself for anumber of clock ticks. Rescheduling always occurswhen the number
of clock ticksisgreater than zero. Valid delaysrange from 0to 65535 ticks. A delay of 0 meansthat the task will not be

delayed and OSTi neDl y() will returnimmediately to the caller. The actual delay time depends on thetick rate (see
OS_TI CKS_PER_SEC inthe configuration file OS_CFG.H).
Arguments

ti cks isthe number of clock ticksto delay the current task.

Returned Value
NONE

Notes/War nings
Notethat calling thisfunction with adelay of O resultsin no delay and thusthefunction returnsimmediately tothecaller.

To ensure that atask delays for the specified number of ticks, you should consider using a delay value that is one tick
higher. For example, to delay atask for at least 10 ticks, you should specify avalue of 11.

Example

voi d TaskX(void *pdat a)

{
for (;;) {

OSTi nmeDl y(10) ; /* Delay task for 10 clock ticks */




OSTimeDIyHMSM()

voi d OSTi meDl yHVBM | NT8U hours, | NT8U mi nutes, |NT8U seconds, INT8U mlli);

File Called from Code enabled by
OS TIME.C Task only N/A

OSTi meDl yHVSM ) allows atask to delay itself for a user specified amount of time specified in hours, minutes,
seconds and milliseconds. Thisisamore convenient and natural format than ticks. Rescheduling always occurswhen
at least one of the parametersis non-zero.

Arguments

hour s isthe number of hoursthat the task will be delayed. The valid range of valuesisfrom 0to 255 hours.
m nut es isthe number of minutesthat the task will be delayed. The valid range of valuesisfrom 0 to 59.
seconds isthe number of seconds that the task will be delayed. The valid range of valuesisfrom 0 to 59.
m || i isthenumber of millisecondsthat thetask will be delayed. Thevalid range of valuesisfrom 0to 999. Notethat
theresolution of thisargumentisinmultipleso f thetick rate. For instance, if thetick rateis set to 10 mSthen adelay of
5 mSwould result in no delay. Thedelay isactually rounded to the nearest tick. Thus, adelay of 15 mSwould actually
result in adelay of 20 mS.

Returned Value

OSTi meDl yHVMBM ) returns one of the following error codes:

OS_NO_ERR; if you specified valid arguments and the call was successful.
OS_TI ME_I NVALI D_M NUTES, if the minutes argument is greater than 59.
OS_TI ME_I NVALI D_SECONDS, if the seconds argument is greater than 59.
OS_TI ME_I NVALI D_Ms, if the milliseconds argument is greater than 999.
OS_TI ME_ZERO _DLY, if dl four argumentsare 0.

gLsLdE

Notes/War nings
Note that calling this function with adelay of 0 hours, 0 minutes, 0 seconds and 0 milliseconds resultsin no delay and
thus the function returnsimmediately to the caller. Also, if the total delay time ends up being larger than 65535 clock
ticks then, you will not be able to abort the delay and resume the task by callingOSTi meDl yResune() .

Example

voi d TaskX(voi d *pdat a)

{
for (;;) {




OSTi reDl vVHVBM 0. 0. 1. 0): [/* Delav task for 1 second */

OSTimeDIlyResume()

| NT8U OSTi meDl yResune( | NT8U pri0);

File Called from Code enabled by
0S TIME.C Task only N/A

OSTi meDl yResune() alows your application to resume a task that has been delayed through a call to either
OSTi neDl y() orOSTi neDl yHVSM ) .

Arguments
pri o specifiesthe priority of the task to resume.
Returned Value
OSTi meDl yResune() returnsone of thefollowing error codes:
OS_NO_ERR, if the call was successful.
OS_PRI O_| NVALI D, if you specified atask priority greater thanOS_LOWEST_PRI Q

OS_TI ME_NOT_DLY, if thetask is not waiting for time to expire.
OS_TASK_NOT_EXI ST, if thetask has not been created.

SLne

Notes/Warnings

Note that you MUST NOT call this function to resume atask that is waiting for an event with timeout. This situation
would make the task look like atimeout occurred (unless you desire this effect).

Y ou cannot resume atask that hascalledOSTi meDl yHMSM ) with acombined time that exceeds 65535 clock ticks. In
other words, if the clock tick runs at 100 Hz then, you will not be able to resume a delayed task that called
OSTi meDl yHMSM 0, 10, 55, 350) or higher.

(10 Minutes* 60 + 55 Seconds + 0.35) * 100 ticks/second

Example

voi d TaskX(void *pdata)

{
| NT8U err;

pdata = pdat a;
for (;35) {

err = OSTi meDl yResune( 10) ; /* Resunme task with priority 10 */




if (err == OS NO ERR) {

/* Task was resuned */
}
}
}
OSTimeGet()
I NT32U COSTi neCet (voi d);
File Called from Code enaded by
OS TIME.C Task or ISR N/A

OSTi meGet () alowsatask obtain the current value of the system clock. The system clock is a32-bit counter that
counts the number of clock ticks since power was applied or since the system clock was last set.

Arguments
NONE
Returned Value
The current system clock value (in number of ticks).
Notes/War nings
NONE

Example

voi d TaskX(void *pdata)

{ I NT32U cl k;
for (i) {
.clk = OSTinmeCGet(); [* Get current value of system clock */
}
}

OSTimeSet()

voi d OSTi meSet (| NT32U ti cks);




File Called from Code enabled by
OS TIME.C Task or ISR N/A

OSTi neSet () alowsatask toset thesystem clock. The system clock isa32-bit counter which counts the number of
clock ticks since power was applied or since the system clock was last set.

Arguments

t i cks isthedesired valuefor the system clock, in ticks.

Returned Value
NONE
Notes/War nings
NONE
Example
voi d TaskX(voi d *pdat a)
{
for (;3) {
OSTi meSet (OL) ; /* Reset the systemclock */
}
}
voi d OSTi neTi ck(void);
File Called from Code enabled by
OS TIME.C Task or ISR N/A

OSTi meTi ck() isusedtoprocessaclocktick. p C/OSII checks all tasksto seeif they were either waiting for time to
expire (because they called OSTi nmeDl y() or OSTi meDl yHVMSM ) ) or, are waiting for events to occur until they
timeout.
Arguments
NONE
Returned Value

NONE




Notes/War nings

The execution time of OSTi meTi ck() is directly proportional to the number of tasks created in an application.
OSTi meTi ck() canbecalled by either an ISR or atask. If called by atask, thetask priority should be VERY high (i.e.
have alow priority number) because this function is responsible for updating delays and timeouts.

Example
(Intel 80x86, RealkMode, Large Model)

Ti ckl SR PROC FAR
PUSHA ; Save processor context
PUSH ES
PUSH DS
I NC BYTE PTR _OSI nt Nesti ng ; Notify puC/GS-11 of start of ISR
CALL FAR PTR _OSTi meTi ck : Process clock tick
; User Code to clear interrupt
CALL FAR PTR _OSI nt Exi t ; Notify puc/Os-11 of end of ISR
POP DS ; Restore processor registers
POP ES
POPA
| RET ; Return to interrupted task
Ti ckl SR ENDP
I NT16U OSVer si on(voi d);
File Called from Code enabled by
OS CORE.C Task or ISR N/A

OSVer si on() isused to obtain the current version of L C/OSHI.

NONE

Arguments

Returned Value

Theversion isreturned as x.yy multiplied by 100. In other words, version 1.00 isreturned as 100.

NONE

Notes/War nings




Example

voi d TaskX(void *pdata)

{ I NT16U os_versi on;
for (;:) {
;)s_version = OSVersion(); [/* Obtain uC/ CS-11"'s version &y
}
}

OS _ENTER_CRITICAL()
OS_EXIT_CRITICAL()

File Called from Code enabled by
OS CPU.H Task or ISR N/A

OS_ENTER _CRI Tl CAL() and OS_EXI T_CRI TI CAL() are macros which are used to disable and enable the
processor's interrupts, respectively.

Arguments

NONE

Returned Value
NONE

Notes/War nings
These macros must be used in pair.

Example

I NT32U Val ;

voi d TaskX(void *pdata)

{
for (;;) {




OS_ENTER_CRI Tl CAL() ;

OS_EXI T_CRI TI CAL() ;

/*

/*

/*

Di sabl e interrupts

Access critical code

Enabl e

interrupts

*/

*/

*/




Chapter 12

Configuration Manual

Thischapter providesadescription of the configurable elementsof u C/OS-I1. Becauseu C/OSH | is provided in
source form, configuration of p C/OS-I1 is done through a number of #def i ne constants. The #defi ne
constants are found in afile called OS_CFG. H and should exist for each project/product that you make.

Thissection describeseach of the#def i ne constant in the order in which they are found inOS_ CFG. H.
Table 12-1 provides a summary of these constants and which p G/OS 1 functions they affect.

Of course, OS_ CFG. Hmust beincluded when u C/OS- | isbuiltin order for the desired configuration to take
effect.



Service

Setto 1to
enable code

Other config. constant(s)
affecting function

Miscellaneous

0S_MAX_EVENTS,
0OS_Q_EN and OS_MAX_QS,
0OS_MEM_EN,

OSlInit() N/A
OS_TASK_IDLE_STK_SIZE,
OS_TASK_STAT_EN,
0OS_TASK_STAT STK_SIZE

0OSSchedLock() N/A N/A

0OSSchedUnlock() N/A N/A

OSStart() N/A N/A

OSStatlnit()

OS_TASK_STAT_EN &&
OS TASK_CREATE EXT EN

OS TICKS PER _SEC

OSVersion() N/A N/A

Interrupt Management

OSIntEnter() N/A N/A

OSIntExit() N/A N/A

Message Mailboxes

OSMboxAccept() 0OS_MBOX_EN N/A

OSMboxCreate() 0S_MBOX_EN 0OS_MAX_EVENTS

OSMboxPend() 0OS_MBOX_EN N/A

OSMboxPost() 0S MBOX EN N/A

OSMboxQuery() OS_MBOX_EN N/A

Memory Partition Management

OSMemCreate() 0S_MEM_EN 0S_MAX_MEM_PART

OSMemGet() OS_MEM_EN N/A

OSMemPut() 0OS_MEM_EN N/A

OSMemQuery() OS_MEM_EN N/A

Message Queues

OSQAccept() 0OS O EN N/A
OS_MAX_EVENTS,

OSQCreate() OS_Q_EN Os:M Ax:QS

OSQFlush() 0S_Q _EN N/A

0SQPend() 0S_Q _EN N/A

OSQPost() 0S Q EN N/A

OSQPostFront() 0OS Q EN N/A

OSQQuery() OS_Q_EN N/A

Table 12-1a




Service

Setto 1to
enable code

Other config. constant(s)
affecting function

Semaphore Management

0OSSemAccept() OS_SEM_EN N/A

0OSSemCreate() 0OS SEM EN 0S MAX EVENTS

0SSemPend() OS SEM EN N/A

0SSemPost() OS_SEM_EN N/A

OSSemQuery() OS SEM EN N/A

Task Management

OSTaskChangePrio() 0S_TASK_CHANGE_PRIO_EN JOS_MAX_TASKS

OSTaskCreate() 0OS_TASK_CREATE_EN 0S_MAX_TASKS
OS_MAX_TASKS,

OSTaskCreateExt() OS_TASK_CREATE EXT_EN |3 (o ct GLR

OSTaskDel() OS _TASK DEL_EN OS MAX TASKS

OSTaskDelReq() OS_TASK_DEL_EN 0S_MAX_TASKS

OSTaskResume() 0S_TASK_SUSPEND_EN 0S_MAX_TASKS

OSTaskStkChk() OS TASK CREATE EXT EN JOS MAX TASKS

OSTaskSuspend() 0OS_TASK_SUSPEND EN 0S_MAX_TASKS

OSTaskQuery() 0S_MAX_TASKS

Time Management

OSTimeDly() N/A N/A

OSTimeDlyHMSM() N/A OS _TICKS PER SEC

OSTimeDlyResume() N/A 0OS_MAX TASKS

OSTimeGet() N/A N/A

OSTimeSet() N/A N/A

OSTimeTick() N/A N/A

User Defined Functions

OSTaskCreateHook() OS_CPU HOOKS_EN N/A

OSTaskDelHook() OS_CPU HOOKS EN N/A

OSTaskStatHook() 0OS_CPU_HOOKS_EN N/A

0OSTaskSwHook() 0OS_CPU_HOOKS_EN N/A

OSTimeTickHook() OS CPU HOOKS EN N/A

Table 12-1b




0OS MAX _EVENTS

OS_MAX_EVENT S specifiesthe maximum number of event control blocksthat will beallocated. Anevent

control block is needed for every message mailbox, message queue or semaphore object. For example, if you
have 10 mailboxes, 5 queues and 3 semaphores, you must set OS_ MAX_EVENTS to at least 18. If you

intend to use either mailboxes, queues and/or semaphores then you MUST set OS MAX EVENTS to at
least 2.

0OS MAX MEM PART

OS_MAX_MEM PART specifies the maximum number of memory partitions that will be managed by the
memory partition manager foundinOS_MEM C. To use memory partition, however, you will also need to
set OS_MEM _ENto 1. If youintend to use memory partitionsthenyouMUST setOS_ MAX NMEM PART
to at least 2.

0S MAX QS

OS_MAX_ @S specifies the maximum nurrber of message queues that your application will create. To use
message queue services, you will also needto setOS_Q ENto 1. If you intend to use message queues then
you MUST set OS_ MAX_QSto at least 2.

0OS MAX_TASKS

OS_MAX_TASKS specifiesthemaxi mum number of application tasks that can exist in your application. Note
that OS_MAX_TASKS cannot be greater than 62 because yu C/OS-II reserves two tasks for itself (see
OS_N_SYS _TASKSinuCOS_ 11 . H). If you set OS_MAX_TASKS to the exact number of tasksin
your system, you will need to make sure that you revise thisvalue when you add additional tasks. Conversely,
if youmakeOS_MAX_TASKS much higher than your current task requirements (for future expansion), you will
be wasting valuable RAM.

OS LOWEST PRIO



OS_LOWEST _PRI Ospecifiesthelowest task priority (i.e. highest number) that you intend to usein your
application and is provided to allow you to reduce the amount of RAM needed by i1 C/OS-Il. Remember that
U C/OSII's priorities can go from 0 (highest priority) to a maximum of 63 (lowest possible priority). Setting
OS_LOWEST_PRI Oto avalue less than 63 means that your application cannot create tasks with a
priority number higher than OS LOWEST PRI O. In fact, uC/OSIl reserves priorities
OS LONEST _PRIO and OS LOVWEST PRIO — 1 for itself. Task of priority
OS _LOWEST_PRI O is reserved for the idle task (OSTaskl dl e()) while priority
OS_LOWEST_PRI O — 1isreservedfor the statistic task (OSTask St at () ). The priorities of
your application taskscan thustake avaluebetween 0andOS _LOWEST PRI O — 2 (inclusively). The
lowest task priority specified by OS LOWEST PRI Ois independent of OS_MAX_ TASKS. For
example, youcan setOS_MAX_TASKSt010andOS_LOWEST _PRI Oto 32. You can thus have up

to 10 application tasks and each of those can have atask priority value between 0 and 30 (inclusively). Note
that each task must still have adifferent priority value. YouMUST alwayssetOS _LOWEST PRI Otoa

higher value than the number of application tasks in your system. For example, if you set
OS_MAX_TASKSt020andOS_LOWEST _PRI Oto 10 then you will not be able to create more than

8 application tasks (0...7). Youwill simply bewasting RAM.

OS TASK_ IDLE _STK_ SIZE

OS_TASK | DLE_STK_SI ZE specifiesthesizeof p C/OS-I'sidletask. Thesizeis specified not in bytes but
in number of elements. Thisisbecause astack MUST be declared to be of type OS_STK. Thesize of theidle
task stack depends on the processor you are using and the deepest anticipated interrupt nestinglevel. Very
littleisbeing doneintheidletask but, you should accommodatefor at | east enough spaceto storeall processor
registers on the stack.

OS TASK _STAT_EN

OS_TASK_ STAT __EN specifies whether or not you will enable u C/OS-11's statistics task as well as its
initialization function. When set to 1, the statistic task and the statistic task initialization function are enabl ed.
The statistic task (OSTask St at () ) is used to compute the CPU usage of your application. When
enabled, OSTask St at () executes every second and computes the 8-hit variable OSCPUUs age
which provides the percentage of CPU utilization of your application. OSTaskSt at () cals
OSTaskSt at Hook () every timeit executes so that you can add your own statistics as needed. See
OS_CORE. Cfor details on the statistics task. The priority of OSTaskSt at () is aways set to
OS LOWEST PRI O - 1.

The global variablesOSCPUUs age, OSI dl eCt r Max, OSI dl eCt r Run and OSSt at Rdy
will not be declared whenOS_ TASK STAT ENisset to 0. Thisallows you to reduce the amount of
RAM needed by p C/OSH I if you don’t intend to use the statistic task.



OS TASK STAT STK SIZE

OS _TASK_STAT_STK_ Sl ZE specifies the size of pC/OS-I's statistics task stack. The size is
specified not in bytes but in number of elements. This is because a stack is declared as being of type
OS_STK. Thesize of the statistics task stack depends on the processor you are using and the maximum of

the following actions:

The stack growth associated with performing 32-bit arithmetic
The stack growth associated with calling OSTi meDIl y ()

The stack growth associated with callingOSTas k St at Hook ()
The deepest anticipated interrupt nesting level

A wWwDhPE

If you want to run stack checking on thistask and determine thistask’s actual stack requirements then, you
must enable code generation for OSTaskCr eat eExt () by setting OS_TASK_CREATE_EXT_ENto 1.
Again, thepriority of OSTaskSt at () isawayssettoOS LOWNEST PRI O - 1.

OS CPU HOOKS EN

Thisconfiguration constant indicateswhether OS_ CPU _C. Cdeclaresthe hook functions (when set to 1)
or not (when set to 0). Recall that p C/OS-11 expects the presence of six functions that can either be defined in
the port (i.e.inOS_CPU_C. C) or by the application code. These functions are:

OSTaskCr eat eHook()
OSTaskDel Hook()
OSTaskSt at Hook()
OSTaskSwHook()
OSTi meTi ckHook()

OO BhWDNE

OS MBOX_EN

This constant allows you to enable (when set to 1) or disable (when set to 0) code generation of message
mailbox services and data structures. This allows you to reduce the amount of code space when your
application does not require the use of message mailboxes.



OS MEM EN

This constant allows you to enable (when set to 1) or disable (when set to 0) code generation of p C/OS-I's
partition memory manager and its associated data structures. This allows you to reduce the amount of code
and data space when your application does not require the use of memory partitions.



OS Q EN

This constant allows you to enable (when set to 1) or disable (when set to 0) code generation of p C/OS-I's
message queue manager and its associated data structures. Thisallowsyou to reduce the amount of code and
dataspace when your application does not require the use of message queues. Notethatif OS_Q ENis set
toOthenthe#def i ne constant OS_MAX_QSiisirrdevant.

OS SEM EN

This constant allows you to enable (when set to 1) or disable (when set to 0) code generation of u C/OS-I's
semaphore manager and its associated datastructures. Thisallowsyou to reducethe amount of code and data
space when your application does not require the use of semaphores.

OS TASK CHANGE_PRIO EN

This constant allows you to enable (when set to 1) or disable (when set to 0) code generation of the function
OSTaskChangePri o() . If your application never changes task priorities once they are assigned

then you can reduce the amount of code space used by pC/OSII by setting
OS _TASK CHANGE PRI O ENtoo.

OS TASK CREATE_EN

This constant allows you to enable (when set to 1) or disable (when set to 0) code generation for the
OSTaskCr eat e( ) function. Enabling this function makes p C/OS-11 backward compatible with

HUC/OSs task creation function.  If your application aways uses OSTaskCr eat eExt ()

(recommended) then you can reduce the amount of code space used by W C/OSII by setting
OS_TASK _CREATE_EN to 0. Note that you MUST set at least one of the two #def i nes

OS_TASK_ CREATE_ENorOS_TASK CREATE_EXT_ENto1. If youwish, you can actually
use both.

OS TASK CREATE EXT _EN



This constant allows you to enable (when set to 1) or disable (when set to 0) code generation of the function
OSTaskCr eat eExt () which isthe extended, and more powerful version of the two task creation

functions. If your application never usesOSTask Cr eat eExt () then you can reduce the amount of
code space used by p C/OS-II's by settingOS_ TASK CREATE_EXT _ENto 0. Note, however, that
you need the extended task create function to use the stack checking function OSTask St kChk( ) .

OS TASK DEL EN

This constant allows you to enable (when set to 1) or disable (when set to 0) code generation of the function
OSTaskDel () which allowsyou to delete tasks. If your application never uses this function then you can
reduce the amount of code space used by p C/OS-I1 by setting OS_TASK_DEL_ENto 0.

OS TASK SUSPEND EN

This constant allows you to enable (when set to 1) or disable (when set to 0) code generation of the two
functionsOSTaskSuspend() andOSTaskResume() whichallowsyouto explicitly suspend and resume
tasks, respectively. If your application never uses these functions then you can reduce the amount of code
space used by i C/OS-1 by settingOS_TASK_SUSPEND_ENto 0.



OS TICKS PER SEC

Thisconstant specifiestherateat whichyouwill cal OSTi meTi ck( ) . Itisuptoyour initidization code
to ensurethatOSTi meTi ck( ) isinvoked at thisrate. Thisconstantisusedby OSSt at I ni t (),
OSTaskSt at () and, OSTi meDl yHMSM ) .
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Appendix F

HC/OSI is a great reattime kernel and has proven itself in countless applications all around the world. Also, a

number of Colleges and Universities are using 1 C/OS to teach real-time software.

H C/OS-1's source and object code can be freely distributed (to students) by accredited Colleges and Universities
without requiring a license, as long as there is no commercia application involved. In other words, no licensing is
required if 1 C/OS-11 is used for educational use.

YouMUST obtain an 'Object Code Distribution License' to embed p C/OS-11 inacommercial product. I1n other words,
you must obtain a license to put u C/OS-I1 in a product that is sold with the intent to make a profit. There will be a
license fee for such situations and you will need to contact me (see below) for pricing.

You MUST obtain an 'Source Code Distribution License' to distribute g C/OS-11"s source code. Again, there will be a
feefor such alicense and you will need to contact me (see below) for pricing.

Y ou can contact me at:

Jean.L abr osse@uCOS-11.com

Orv

Jean J. Labrosse
9540 NW 9" Court
Plantation, FL 33324
U.SA.

1-954-472-5094
1-:954-472-7779 (FAX)

UC/OS11 Web site

The n C/OS-11 WEB site (ww.uCOS- I.com) contains the following information:

News on p C/OS and p C/OSHI,

Bug fixes,

Availability of ports,

Answersto frequently asked questions (FAQs),
Application notes,

Books,

Classes,

Linksto other WEB sites, and
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